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Abstract

This thesis presents two approaches to how automatic programming can be
applied to the well-studied field of classification through the use of the auto-
matic programming system, Automatic Design of Algorithms Through Evo-
lution (ADATE).

First, we evaluate whether the inductive bias of ADATE is better suited
in general to induce classifiers than the inductive bias of other classification
algorithms specifically designed for this task. Our results show that ADATE
is competitive with state-of-the-art classification algorithms when applied to
a set of classification problems from the UCI machine learning repository,
although the execution time of ADATE is order of magnitudes higher than
the combined execution time of the 32 other classification algorithms tested.
In a separate paper given in appendix A, we use most of these classification
algorithms to classify infrasound events pre-processed with wavelet trans-
forms.

Second, we investigate the feasibility of improving existing classification
algorithms through automatic programming by using ADATE to rewrite the
code for the so-called error based pruning algorithm that is an important
part of Quinlan’s C4.5 decision tree system. We evaluated the resulting
synthesized pruning algorithm on numerous synthetic data sets and found
that it generates trees with seemingly better generalizing ability.

Keywords classification, automatic programming, meta-learning
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Prerequisites

The reader should be familiar with functional programming, more specifically
Standard ML, since ADATE, the automatic programming system utilized in
this thesis, relies heavily upon Standard ML and a dialect of Standard ML
called ADATE-ML. Still, it should be possible to follow most of this thesis
except for some of the details about the inner workings of ADATE, the
ADATE specifications and the programs synthesized.

However, no knowledge should be required about the other areas of ma-
chine learning and classification which this thesis touches upon since a de-
scription is provided of these areas. Nevertheless, the description is far from
complete and the reader should consult the references given for more infor-
mation. Thus, it is preferable that the reader has some knowledge of machine
learning and classification.
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Chapter 1

Introduction

Classification is one of the most popular and well studied fields of machine
learning. The problem is how to predict which class an instance belongs to
based on its attributes, for example predicting whether a mushroom is poi-
sonous by considering its color and height. Systems making such predictions
are known as classifiers, and are learned, that is induced, using already seen
data where the class of each instance is known. In other words, classifiers
make predictions about the future based on the past.

Classifier inducers search for the best possible classifier for a particular
data set. Their search space is virtually infinite in terms of the number
of classifiers, which means that it is practically impossible to conduct an
exhaustive search that is guaranteed to find an optimal classifier. Therefore,
the classifier inducers reduce the search space by favoring certain classifiers
over others. This is known as the inductive bias of a classifier inducer.

It is the inductive bias and how well it fits a specific data set that deter-
mines the accuracy of the induced classifier. Thus, for a specific data set it is
important to find the classification algorithm with the appropriate inductive
bias.

Another paradigm in machine learning is automatic programming where
a system automatically creates programs to solve a specific problem. The
problem and some method for evaluating the generated programs are de-
scribed in some sort of specification given to the system. This is declarative
programming, distinct from normal programming in that the programmer
specifies only what the problem is and not how to solve it. In this thesis,
automatic programming is explored using Automatic Design of Algorithms
Through Evolution (ADATE), which is one of the leading systems for auto-
matic induction of programs.

In terms of ADATE and classification, there are two questions that are
particularly interesting. First, is the inductive bias of ADATE better suited
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CHAPTER 1. INTRODUCTION 2

in general than the inductive bias of other classifier inducers specialized for
this task? ADATE is a more general system than traditional classification
algorithms and it is more flexible in the type of classifiers it can produce.
For example, in theory, it can produce classifiers such as decision trees, rule
sets and neural networks.

Second, is it possible to adapt the inductive bias of classification algo-
rithms to a specific domain or a specific type of domain using ADATE? This
is different from inducing classifiers and is called meta-learning where the
focus is on teaching the learner how to learn in the best possible way.

These two questions will be further explored in this thesis by letting
ADATE create classifiers for specific data sets and letting ADATE improve
an existing classification algorithm in the form of decision tree learning. In
this way, the focus of this thesis is whether classification problems can be
solved through automatic programming either directly or indirectly.

This thesis has the following outline. Chapter 2 introduces the sampling
methods and the classification algorithms used in this thesis. Chapter 3
describes the ADATE system from how specifications are written to how
programs are synthesized. Chapter 4 explains how ADATE can be used to
synthesize classifiers for real world data sets, and the synthesized classifiers
are compared with classifiers produced by other classification algorithms.
Chapter 5 and chapter 6 describe how ADATE can be used to improve de-
cision tree learning, and the resulting synthesized algorithms are evaluated
empirically on both synthetic and real world data sets. We present in chapter
7 the most interesting areas of classification that should be further investi-
gated through automatic programming and concludes this thesis in chapter
8.



Chapter 2

Background

This chapter gives background information covering the different methods
and algorithms used later in this thesis. Most of this chapter is devoted to
classification algorithms and a short introduction is given to the algorithms
that are later compared to ADATE. However, these descriptions are not com-
plete and the specified references should be consulted for more information.

2.1 Sampling Methods

Optimally, the amount of data available in training should be as large as
possible to ensure there are enough data to both learn accurate classifiers
and select the one that is best suited for a particular domain. However, data
are often scarce and sampling methods are needed to increase the amount of
data by creating several data sets from a single original data set. There are
two major sampling methods, bootstrapping and cross-validation.

2.1.1 Bootstrapping

Bootstrapping performs selection with replacement on the original data set
until a certain number of instances have been selected. It repeats this pro-
cedure until enough data sets are created. Each of the generated data sets
is divided into a training and test set, meaning an instance may be included
one or more times in the test sets.

2.1.2 Cross-validation

Cross-validation creates n data sets by dividing the original data set into n
folds. It iterates over the folds, and adopts the current fold as the test set

3



CHAPTER 2. BACKGROUND 4

and the remaining folds as the training set. Thus, each instance is included
exactly once in the test sets.

The most extreme case of cross-validation is leave-one-out cross-validation
where the number of folds is equal to the number of instances in the original
data set. This allows almost all the data to be used in learning the classifier,
but it is computational intensive.

It is popular to chose 10 folds when performing cross-validation.

2.2 Classification Algorithms

A wide range of classification algorithms have been developed through time
with different underlying models and different theories of how a classifier
should be built. As explained in the introduction, these algorithms have
different inductive biases that affect their performance on a data set, and
consequently, it is important to find the inductive bias that best fits the data
set. This can be done empirically by applying a set of different machine
learning algorithms and selecting the algorithm that performs the best.

This is an important methodology in machine learning that we used in
[1](attached in appendix A for convenience) to find the most accurate algo-
rithm for classifying infrasound signals. Initially, we trained only a single
type of classifier, artificial neural network, using the Matlab neural network
toolbox since we were most familiar with this type of classifier. However,
we decided to execute a set of other machine learning algorithms from the
Waikato Environment for Knowledge Analysis (WEKA) tool box as well to
see how these performed on the same problem. Several of these algorithms
were found to perform much better than the neural network algorithms used
initially, which only shows the importance of evaluating many algorithms.

We decided to use WEKA in this paper as well to ensure accurate assess-
ment of the programs synthesized by ADATE. WEKA is an open source data
mining toolbox developed at the University of Waikato in New Zealand. It
has support for all the tasks usually performed in data mining through numer-
ous of algorithms for pre-processing, classification, regression and clustering.
Since WEKA is written in Java, it will in theory run on any operating system
with a recent version Java installed.

In the following sections, the WEKA algorithms employed in this paper
are described. These are grouped according to how and what type of models
they learn.

Note that some of the algorithms are classification algorithms only able
to solve binary class problems or regression algorithms predicting numerical
classes instead of nominal. Because these algorithms cannot solve classifica-
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tion problems with multiple classes by themselves, they are executed using
the ensemble algorithms MultiClassClassifier and ClassificationViaRegress-
sion, which will be explained in section 2.2.7.

2.2.1 Bayes

Bayesian algorithms are based on Bayes’ Theorem, which is defined as

P (h|d) =
P (d|h)Pr(h)

P (d)

where the h corresponds to a hypothesis, namely a prediction of a particular
class, and the d represents the attributes of the unlabeled instance.

Naive Bayes

Naive Bayes (NB) assumes naively that every attribute, ai, is independent of
each other given the class. Thus, the likelihood of a class c is easily computed
as follows:

P (c)
∏

i

P (ai|c)

The class with the highest likelihood is predicted. Although the independence
assumption is seldom true for real world data sets, it seems to work reasonable
well regardless.

2.2.2 Lazy

Lazy learning algorithms differ from the other classification algorithms in
that the training of the classifier is postponed until classification. This al-
lows the classifier to be customized according to each unlabeled instance at
the expense of being computational intensive if there are many instances to
classify.

IB1

IB1 [2] is a nearest neighbour algorithm that determines the class of an
unlabeled instance according to the class of the nearest training instance. The
distance between two instances are calculated using the euclidean distance√√√√ n∑

i=1

(ai − bi)2

where ai and bi are the attributes i of the instances a and b.
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IBk

IBk [2] is similar to IB1, but it uses the k nearest neighbours instead of
only one. The predicted class is determined by the majority vote where each
instance places a vote on its corresponding class. In this paper, we used
leave-one-out cross-validation to determine the number of neighbours.

K*

K* [3] is a nearest neighbour algorithm that employs, instead the euclidean
distance, an entropic distance function computing the probability of ran-
domly transforming one instance into another. Each class receives a vote
from each instance with a weight equal to the distance from it to the unla-
beled instance, and the class with the most votes is selected.

Locally Weighted Learning

Locally weighted learning (LWL) [4, 5] selects a subset of the training in-
stances, where each instance is weighted according to the unlabeled instance.
A k nearest neighbour algorithm is applied to select the subset of instances,
and the weight is calculated by a weighting function taking the euclidean
distance as input. We chose to use the default linear weighting function
f(d) = 1− d.

The weighted training set is fed to another classification algorithm pro-
ducing the final classifier. We chose to follow the recommendation in [6] and
selected Naive Bayes.

2.2.3 Functions

These algorithms have mathematical or statistical foundations and create
models that can be represented mathematically through functions. They are
a mix of regression and classification algorithms.

Linear Regression

Linear regression (LinReg) is a standard linear regression algorithm that
expresses the numerical class as a linear combination of the attributes. The
coefficients of these attributes are calculated using the least-square method.

Logistic

Logistic builds logistic regression models and is implemented according to
[7] with some modifications. These models have similar properties to linear
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regression models, but the target attribute is transformed using the logit
function and the weights are found by maximizing the log-likelihood instead
of minimizing the sum of squared errors.

Simple Logistic

Simple Logistic (SLogistic) [8] also builds logistic regression models, but
it uses another strategy than Logistic involving LogitBoost [9] and a base
learner constructing simple regression models containing only the attribute
yielding the minimum squared error. The number of boosting iterations used
is determined by cross-validation.

MultilayerPerceptron

MultilayerPerceptron (MP) is a neural network algorithm that optimizes the
weights of neural network using backpropagation. We used the default pa-
rameters for this algorithm yielding a forward feed neural network with three
layers, input, hidden and output. The input layer comprises a bias node in
addition to a node for each attribute after the nominal attributes have been
converted to binary attributes. The hidden layer also contains a bias node
in addition to n nodes determined by the following expression

i + o

2

where i and o is the number of nodes in the input and output layer. The
output layer is composed of a node for each class.

The activation function for the nodes in the hidden and output layer is
the sigmoid function.

RBF Network

RBF Network (RBFN) trains a radial basis function network, which is a type
neural network. The network has three layers: an input layer with a node for
each attribute; a hidden layer where each node has a Gaussian radial basis
function as activation function, created using a clustering method called K-
Means [10]; and an output layer containing a node for each class with sigmoid
as activation function.

SMO

SMO, proposed by John Platt [11, 12], is a sequential minimum optimization
algorithm for training support vector machines (SVM). The algorithm finds
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the maximum margin hyperplane represented as a set of vectors known as
support vectors. In order to solve non-linear problems with this linear clas-
sifier, the instance space is transformed using a non-linear kernel function.
We chose to use the default polynomial kernel.

Voted Perceptron

Voted perceptron (VP) [13] transforms the input space using a polynomial
kernel as SMO, but it uses the perceptron [14] algorithm to train the classifier.
During training, it stores all the intermediate prediction vectors, namely the
coefficients of the attributes, along with a weight of how many iterations they
persisted without change. When classifying, each prediction vector votes on a
class according to its weight, and the majority vote determines the predicted
class.

2.2.4 Trees

These algorithms induce decision trees as classifiers, which basically contains
two types of nodes: decision nodes and leaf nodes. Decision nodes are internal
nodes containing a test on a specific attribute that determines which of the
underlying branches an unlabeled instance should follow. Traversal continues
from the root until a leaf node is encountered, and the leaf node predicts the
class of the instance by utilizing a prediction function. Figure 2.1 shows a
traditional decision tree where the leaves contain the class to predict.

Decision tree learning is composed of building and pruning. A decision
tree is typically built by recursively selecting the most promising attribute
and splitting the training set accordingly until all instances belong to the
same class or all attributes have already been used. The most promising
attribute is determined by the attribute maximizing the splitting criterion.
The role of pruning is to simplify the decision tree either during or after
building.

ID3

ID3 [15] is one of the first decision tree learners proposed, and it employs
information gain as splitting criterion. Since it does not support continuous
or missing attribute values, it can only solve a limited set of problems.

J4.8

J4.8 is an implementation of Quinlan’s popular C4.5 [16] decision tree learner
and it improves upon ID3 in several areas. First, it replaces the information
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Figure 2.1: An example of a traditional decision tree where the ellipses are
decision nodes and the rectangles are leaves.

gain splitting criterion with gain ratio since information gain favors attributes
with many values. Second, it supports both continuous and missing values,
and it performs pruning using error based pruning (EBP), which is described
later in section 5.1.1.

REPTree

REPTree is a fast decision tree learner that resembles C4.5 in the implemen-
tation, but it uses information gain instead of gain ratio and reduce error
pruning, described later in section 5.1.1, instead of EBP.

NBTree

NBTree [17] is a hybrid algorithm that creates decision trees with Naive Bayes
classifiers at the leaves learned from the training instances reaching the node.
It follows the standard decision tree learning algorithm and uses the mean
accuracy of creating a Naive Bayes classifier at a given node according to
5-fold cross-validation as splitting criterion.

Logistic Model Trees

Logistic Model Trees (LMT) [8] builds decision trees with logistic regression
models at the leaves, which are iteratively created using Simple Logistic
explained in section 2.2.3. The trees are built similarly to C4.5 by selecting
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attributes according to the gain ratio splitting criterion until there are no
more attributes, all the instances have the same class or there are less than
16 instances. Pruning is performed using the pruning algorithm employed
by the decision tree learner, CART [18].

M5’

M5’ [19] is a reconstruction of Quinlan’s M5 [20] that creates decision trees
with linear regression models at the leaves. It chooses the attribute at each
decision node that maximizes the standard deviation reduction of the class
of the training instances reaching the node. When the tree is built, it tra-
verses upwards from the leaves, while adding linear regression models at the
nodes and possibly removing nodes if necessary. The predicted class value
of an unlabeled instance is determined based on the output of all the linear
regression models encountered when traversing the tree.

Decision Stump

Decision Stump (DS) induces simple decision trees, known as decision stumps,
with only a single decision node. This node has a boolean test, which for a
nominal attribute tests whether the attribute is equal to a specific value and
for a continuous attribute tests whether the attribute is less or equal to a
threshold. This algorithm is normally executed through ensemble algorithms
like bagging and boosting.

Random Forest

Random Forest (RF) [21] uses bagging in combination with a random tree
inducer. The random tree inducer builds a tree by choosing at a given node
the best attribute among a set of randomly selected attributes. Bagging is
explained later in section 2.2.7.

ADTree

ADTree [22] creates what is known as an alternative decision tree by using
boosting to add the different branches. An alternative decision tree is, as
illustrated by figure 2.2, simply a set of interconnected decision stumps with
numerical leaves, where each leaf may be connected to a set of other stumps.
The tree is used to classify unlabeled instances with binary classes by sum-
ming all the numerical nodes encountered while following the different paths
of the tree applicable for the instances. The sign of this value determines the
predicted class.
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Figure 2.2: An example of an alternative decision tree where ellipses are
decision nodes, rectangles are numerical leaves and dashed arrows connect
the decision stumps together.

2.2.5 Rules

This group contains algorithms that create classifiers which are rule sets.
Rule sets are intuitive and easier for humans to interpret than other classifiers
like decision trees.

JRip

JRIP is an implementation of RIPPER [23] with some minor modifications
added to fix what appear to be two bugs in the original algorithm [24]. It
induces each rule of the final rule set in two steps. Firstly, the rule is grown
by continually adding antecedents until it matches only training instances
with a specific class. Secondly, the rule is iteratively pruned by processing
the antecedents in reverse order.

OneR

OneR is a simple algorithm that creates a rule set for each attribute and
chooses the rule set with the lowest error rate on the training data. Each
rule set comprises a rule for each value of a particular attribute that predicts
the majority class of the training instances matching the rule.
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ZeroR

ZeroR is the simplest of all classification algorithms, and it only predicts the
majority class of the training set. This algorithm provides an upper bound of
the error rate that all other classification algorithms should be smaller than.

DecisionTable

DecisionTable (DT) [25] constructs a decision table classifier, which sim-
ply is a table containing the training instances with only a subset of their
attributes included. The optimal subset of the attributes is found using
best-first search combined with cross-validation where the DecisionTable al-
gorithm is executed for different subsets. An unlabeled instance is classified
as the majority class of the matching instances in the table, but if there are
no matching instances, the majority class of all training instances is predicted
instead.

PART

PART [26] creates a rule set by repeatably creating pruned decision trees
using J4.8, converting them to rules and removing the training instances
matching the rule until all training instances are covered by at least one rule.
Each rule is created according to the path from the root of the decision tree
to leaf covering the most training instances. In order to preserve computa-
tional resources, only partial decision trees are constructed where branches
are expanded as needed.

M5Rules

M5Rules [27] builds regression rules using the same algorithm as Part except
it generates trees using M5’ instead of J4.8.

Ridor

Ridor is a RIpple DOwn Rule learner that first creates a default rule pre-
dicting the majority class of the training instances and then recursively adds
exceptions to this rule until all training instances are classified correctly ac-
cording to the rule set. A separate validation set is utilized to find the most
accurate exception at each step.



CHAPTER 2. BACKGROUND 13

NNge

NNge is a nearest neighbour algorithm forming non-nested general exemplars.
A general exemplar is a hyper-rectangle that encompasses a set of training
instances sharing the same class. In this way, each general exemplar is like a
rule, and the nearest exemplar determines the class of an unlabeled instance.
For more information please refer to [28, 29].

2.2.6 Misc

This group contains the algorithms that do not fit naturally into any of the
other groups.

HyperPipes

HyperPipes (HP) is a simple and extremely fast classification algorithm that
constructs a set of attribute ranges for each class. For nominal attributes, the
range is the set of values observed for a particular attribute of the training
instances matching a specific class. The range is found similarly for con-
tinuous attributes except the range is not a subset, but an interval ranging
from the minimum to the maximum observed attribute value. Classification
is performed by selecting the class with the most matching attribute ranges.

VFI

VFI [30] constructs a set of intervals for each attribute similarly to Hyper-
Pipes, but these intervals are not bound to a specific class. Thus, each
interval contains a class count for each class according to the training in-
stances that fall into it. Continuous attributes are basically discretised into
a set of intervals, and an interval for nominal attributes is defined as a single
attribute value. An unlabeled instance is classified using the majority vote,
where each matching attribute interval is allowed to vote.

2.2.7 Ensemble

Ensemble algorithms use a base learning algorithm to create an ensemble
of classifiers and combine these classifiers to reach a prediction. These al-
gorithms differ in how the base learning algorithm is applied and how they
combine the classifiers. The first two algorithms enhance the abilities of the
base learner, making it possible to solve previously unsupported problems,
while the last two enhance the performance of the base learning algorithm.
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ClassificationViaRegression

ClassificationViaRegression allows a regression algorithm to solve classifi-
cation problems. It creates a data set for each class using a 1-against-all
encoding where the class is 1 if it is equal to the current class and 0 other-
wise. A regression model is created for each class based on these data sets,
and classification is performed by predicting the class belonging to the model
yielding the greatest value.

MultiClassClassifier

MultiClassClassifier makes it possible to solve multi-class problems with al-
gorithms that only support binary classes. This is possible through several
methods, but we chose the default 1-against-all method explained in the
previous section.

Bagging

Bagging [31] creates an ensemble of classifiers in order to increase the accu-
racy by stabilizing the base learning algorithm, or in other words decrease
its variance. This is done by generating a set of ”new” training sets using
bootstrapping and applying the base learning algorithm on these data sets.
Prediction is determined by the majority vote of the ensemble.

The success of bagging depends heavily on the properties of the base
learning algorithm. It should be unstable, meaning that it is sensitive to
small changes in the training set, so that its variance can be decreased.

In this paper, we let bagging create 10 classifiers using J4.8 as base learner.

AdaBoost.M1

AdaBoost.M1 [32] is a boosting algorithm that builds an ensemble of clas-
sifiers by forcing the base learning algorithm to focus on the instances that
the previous classifiers had problems classifying correctly. This is done by
accompanying every training instance with a weight representing the severity
of misclassification such that the error rate is calculated as the sum of the
weights of the misclassified instances divided by the sum of all the weights.
Initially, each instance has equal weights, but after a new classifier is in-
duced, the weights are updated so that misclassified instances increase in
weight while the other instances decrease.

Majority voting is utilized to determine the class to predict and each
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classifier votes with the following weight

− log(
e

1− e
)

where e is the error rate observed in training. Therefore, a classifier with a
high error rate will not have as much impact on the final result as a classifier
with a lower error rate.

In this paper, we use J4.8 as base learner and 10 boosting iterations,
resulting in a ensemble of 10 decision trees.



Chapter 3

ADATE

ADATE [33, 34, 35] is a system for automatic programming researched and
developed by Roland Olsson at Østfold University College. The system re-
quires a specification describing what type of programs to create and how
to evaluate them. According to this information, ADATE is able to auto-
matically synthesize programs, which are written in a special language called
ADATE-ML.

ADATE is considered a part of Evolutionary Computation (EC) and uti-
lizes a population-based search inspired by natural evolution. The popula-
tion, or the kingdom as it is called in ADATE, contains the most promising
individuals, that is synthesized programs, at any given time. New individ-
uals are created by selecting an individual from the kingdom and applying
so-called compound transformations, a process called expansion. If some of
these individuals seem promising, they will be inserted into the kingdom and
possibly replace existing members.

The search is mostly systematic and thus differs from other methods in EC
like genetic algorithms (GA) [36] and genetic programming (GP)[37]. Simple
individuals are expanded before complex individuals and simple transforma-
tions are applied before complex transformations. This expansion process
follows iterative-deepening [38]. Despite being systematic, the search is not
exhaustive and heuristics are applied to reduce the search space of individuals
to a maintainable size.

In this chapter, an overview is given of the different parts of ADATE.
Firstly, a description is provided of the external parts of ADATE immediately
exposed to the user, namely ADATE-ML and the specification. Secondly,
the internal workings of ADATE is detailed by explaining the population
management, the transformations and the overall search algorithm. Lastly,
a relatively new feature in ADATE is introduced called habitats.

16
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Table 3.1: Standard ML constructs illegal in ADATE-ML and how they can
be represented in ADATE-ML. This table is taken from [39].

Construct Standard ML ADATE-ML
if expression if E then

RHS1
else

RHS2

case E of
true => RHS1
| false => RHS2

Selectors tl Xs case Xs of
nil => raise NA1
| cons( X1, Xs1) => Xs1

Boolean operator E1 andalso E2 case E1 of
true => E2
| false => false

Left Hand Side fun len nil = 0
| len( X1::Xs1) =

1 + len Xs1

fun len Xs =
case Xs of

nil => 0
| cons( X1, Xs1) =>

1 + len Xs1
Variable
declaration

let
val V = E1

in
E2

end

case E1 of
V => E2

3.1 ADATE-ML

ADATE-ML is a purely functional language specifically designed for synthe-
sis, and the programs synthesized by ADATE are written in this language.
It is a subset of Standard ML, where numerous features have been removed
to keep the language as compact and simple as possible to make synthesis
easier and more effective.

Many of the features removed have little impact on the expressiveness
of the language. This is a result of great redundancy in Standard ML so
that one construct may be equivalently represented using other constructs.
For instance, constructs such as if expressions, selectors, boolean operators,
variable declarations and functions declared with alternative left hand syntax
can be represented with case expressions, which is why these constructs are
illegal in ADATE-ML. Table 3.1 shows these constructs and the alternative
syntax in ADATE-ML.

Other features, on the other hand, are removed although there are no
equivalent alternative representations. This includes features such as poly-
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morphic data types, structures, signatures, functors and curried, anonymous
and higher-order functions. These features would complicate the synthesis
process if introduced, and the transformations applied to the programs would
have to be redesigned.

Similarly to the core language, the size of the built-in library of data
types and functions is small. The data types included are only bool, real,
integer, array and rconst. Most of these are familiar from Standard ML
except rconst, which is used by ADATE to define constants. The built-in
functions consist of arithmetic and boolean functions for modifying and com-
paring integers and reals as well as functions for accessing and modifying
elements in an array.

3.2 Specification

An ADATE specification describes the problem that the ADATE system
should solve, that is what type of program to synthesize. The specification
consists of two parts separated by %%, where the first part is written in
ADATE-ML and the second part is written in Standard ML. These two
parts are explained in the next sections. The first two sections belong to the
ADATE-ML part, while the last two sections belong to the Standard ML
part.

3.2.1 User-Defined Data Types and Functions

Since ADATE-ML only contains a very limited set of data types and func-
tions, there is almost always a need to define additional data types and func-
tions to be able to represent the problem at hand. This is done in exactly
the same manner as in Standard ML using the datatype and fun keywords.

However, defining a function does not automatically make it available
during synthesis; Instead, this has to be specifically declared for each function
in the Standard ML part, which is covered later in section 3.2.3.

3.2.2 The f Function

The f function is the function or the program that ADATE should synthesize.
Typically, this function is initialized to an almost empty function, which
raises only an exception and never returns anything, since little is known
about the implementation of the final program. Nevertheless, it is possible to
define a non-empty f function that already implements an existing algorithm



CHAPTER 3. ADATE 19

in order to allow ADATE to improve it instead of starting from scratch. Both
approaches are utilized in the specifications written for this paper.

The f function is not called directly by ADATE. Instead, it calls another
function, main, which is required to call the f function at least once. This
allows the f function to be a standalone algorithm or a part of a larger
algorithm. In this paper, the f function is always a standalone algorithm
and the main function simply wraps the f function.

3.2.3 Available Functions

The functions available to ADATE during synthesis of the f function are
controlled through two lists. The first list, funs to use, contains the names
of the help functions and constructors ADATE is allowed to use. The second
list, abstract types, restricts access to the listed data types by preventing
pattern matching against their constructors.

These two lists should be defined with great care since the functions avail-
able in synthesis directly affect the ability of ADATE to synthesize programs.
If the available functions do not include all the necessary functions, it will
make it impossible for ADATE to reach a good f function. If, on the other
hand, there are too many functions available, it will increase the number of
synthesis choices to the extent that it will be virtually impossible to reach a
good f function within a reasonably amount of time.

Thus, the functions available should be few and at the same time contain
all the necessary functions. This can be hard to achieve in practise since it
often is difficult to decide which functions that will be relevant in synthesis.
Luckily, ADATE is not that sensitive to the available help functions because
it can invent auxiliary functions as needed.

3.2.4 Inputs and Output Evaluation Function

Evaluation of the synthesized programs is performed through a set of inputs
and the output evaluation function, output eval fun, defined by the user.
The inputs are iteratively given to the main function, which calls the f func-
tion one or more times before returning some kind of output. Each input and
output pair is given to the output evaluation function, which calculates an
evaluation value. These evaluation values are combined to produce a single
evaluation value for the outputs.

Each evaluation value is a record containing three values. The first two
values are integers and represent how many correct and wrong decisions
made by the f function. The last value is a grade, used to introduce finer
granularity to enable differentiation of programs that have the same number
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of correct and wrong decisions. An empty grade can be returned if this finer
granularity is unneeded.

Since ADATE relies upon a separate user-defined function to provide the
evaluation value of the synthesized programs, the evaluation procedure can
be customized specifically to the specification. For instance, the evaluation
function can be defined to support the popular evaluation approach, where
the output returned from the synthesized program is compared to what is
believed to be the correct output of the input. However, it is not always
apparent what the correct output is or there might be more than one cor-
rect output. In these circumstances, a more complex evaluation function
is needed. Regardless of implementation, the evaluation function should be
relatively effective because it is called for every synthesized program and
input.

ADATE utilizes two sets of inputs, one for training and one for testing.
The training inputs are used during synthesis to manage the population.
Naturally, the fitness value for this data is overly optimistic and might be a
result of overfitting, making it unsuitable for evaluating the generality of a
program. Therefore, a separate test set is used instead for this purpose.

There are at least three usages of this test set. First, it enables discovery
of overfitting in the population by comparing fitness values of the programs
for the training and test set to see whether an increase in training results in an
increase in testing as well. Second, it can be used to select the program in the
population that is likely to perform the best in general. Third, it allows the
synthesized programs to be compared with other systems producing similar
programs.

3.3 Population Management

In this section, an overview is given of how the kingdom is maintained in
ADATE by explaining how the individuals are evaluated, how the kingdom
is structured, and how new individuals are inserted into the population.

3.3.1 Evaluation of Individuals

Each individual is evaluated on a set of inputs, namely the training set or the
test set, in terms of syntactic complexity, time complexity and performance.
The syntactic complexity, intuitively, represents the size of the individual,
that is the number of bits needed to represent it. There are three different
functions for calculating the syntactic complexity in ADATE [33].
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pe1 = −Nc :: G :: [Nw, S, T ]

pe2 = −Nc :: G :: [Nw, T, S]

pe3 = [Nw, Nc] @ G @ [S, T ]

Figure 3.1: The lists returned from three program evolution functions in
ADATE.

The time complexity, naturally, relates to the time it takes to execute
the individual for the data set. However, instead of measuring the actual
time, which is unreliable, it counts the number of calls made to either the f

function or the auxiliary functions defined in f.
The performance is computed using the two previously described com-

plexity measures together with the concatenation of all the values returned
from the output evaluation function. This amounts to the following five val-
ues: T, the time complexity; S, the syntactic complexity; NC , the number
of correct; NW , the number of wrong; and G, the grade. These values are
ordered differently and returned as a list by the three program evaluation
functions defined in ADATE. Figure 3.1 presents the different orderings of
these lists.

Two performance values are compared to each other lexicographically.
As a result, the elements are compared successively to each other until two
elements differ. Note, smaller is considered better.

3.3.2 Kingdom Structure

The kingdom comprises nine sub-populations, one for each combination of the
three syntactic and three program evaluation functions. Each sub-population
is divided into cells, as illustrated by figure 3.2, according to a time and
syntactic complexity grid, where each cell contains what is known as a family.

A family consists of an individual called the base individual and two
collections of individuals called embed genus and output genus. The base
individual is the individual that currently has the smallest time and syntactic
complexity for a given cell. The other two collections are directly related to
the base individual. An embedded genus comprises individuals transformed
from the base individual using the embedded transformation, which will be
introduced in section 3.4.1. An output genus, on the other hand, includes
individuals that are semantically different than the base individual. The
diversity in an output genus is maintained using the shark pool algorithm
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Figure 3.2: The grid that each sub-population is divided into. The figure is
taken from [39]

described later in section 3.6.2.
The nine sub-populations are not orthogonal and individuals may appear

in any of them at any given time. This typically results in a considerable
overlap between the different sub-populations, meaning the cardinality of
the kingdom is often much smaller than the sum of the cardinalities of the
different sub-populations.

3.3.3 Insertion into the Kingdom

The main design goal of the insertion algorithm is to prevent missing links in
the genealogical chains of the individuals in the population [35]. A missing
link is defined as a gap in the genealogical chain that is too large for one
ancestor to reach the next ancestor through a set of transformations reason-
ably limited in complexity. Missing links should be avoided since they might
result in ADATE getting stuck in local minima.

Based on hand-constructed genealogical chains of individuals and em-
pirical studies, a heuristic was developed that seems to avoid missing links
reasonably well in a population. This heuristic states that all individuals in
the kingdom should be better than all individuals in the population that are
not bigger. In addition to preventing missing links, it keeps the population
small and limits the introduction of individuals containing no meaningful
improvements.

This heuristic forms the basis of the algorithm used to insert individuals
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into the different sub-populations of the kingdom. An individual is inserted
into its corresponding family and replaces the base individual if the following
two assertions hold: it is smaller than the base individual and it is better
than all the base individuals without a larger time or syntactic complexity.
In addition to replacing the base individual of the family, it replaces any
base individual that performs worse and has not a smaller time or syntactic
complexity.

If, on the other hand, the individual could not replace the base individual
of the family, an attempt is made to insert it into an embedded or output
genus. These collections are included to increase the diversity in the kingdom
and decrease the possibility of missing links.

3.4 Transformations

ADATE synthesizes new programs based on existing programs through com-
pound transformations, where a single compound transformation comprises
a series of atomic transformations. Most of these atomic transformations
are specifically designed with program synthesis in mind and do not directly
emulate concepts in the nature such as mutation and cross-over. Both types
of transformations are described next.

3.4.1 Atomic Transformations

Atomic transformations are the smallest transformation unit in ADATE and
there are currently six atomic transformations available.

Replacement

Replacement replaces an existing expression with a new synthesized expres-
sion.

Replacement without Degradation

Replacement without degradation is a special type of Replacement transfor-
mation that does not degrade the f function. This is determined according
to a special performance measure −Nc :: Grades@[Nw], similarly defined as
the measures in section 3.3.1.
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Case Distribution

Case Distribution transforms case expressions. If the case expression is lo-
cated inside a function call, that is the result of the case expression is one
or more of the parameters to the function, it will move the case expression
outside the function call, so that the function is called for each clause in
the case expression. This transformation can also be conducted in opposite
direction by moving the case expression inside a function call.

Abstraction

Abstraction converts an expression into a let-function by moving a part of the
expression inside the function definition and the rest of the expression inside
the call to this function at the end of the let expression. This operation is
basically the opposite procedure of inlining, where a function call is replaced
by the actual expression in the function.

This transformation enables ADATE to create auxiliary functions by it-
self. It reduces the need for help functions and decreases the responsibility of
the specifier in defining them. In addition, the number of synthesis options
can be reduced because the auxiliary functions are locally scoped and fewer
help functions are required.

Embedding

Embedding generalizes the signature of a function by either changing the
input type or the return type.

Cross-over

Cross-over applies a genetic algorithm to a set of REQ transformations where
each one is considered an allele.

3.4.2 Compound Transformations

As explained previously, a compound transformation consists of a series of
atomic transformations. Only the first atomic transformation is chosen freely,
while the other transformations are constrained by a set of predefined cou-
pling rules.

There are two types of coupling rules in ADATE: weak and strong cou-
pling rules. A weak coupling rule specifies a pre-condition that must be true
for some of the previous transformations. A strong coupling rule, on the
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Insert the init ial program 
into the kingdom

Select a program for expansion

Have reached the cost l imit?

Generate a new program

No 

Yes 

Attempt to insert the programs 
into the population 

Figure 3.3: A graphical representation of the overall search algorithm in
ADATE.

other hand, is more strict and the pre-condition must be true for the pre-
vious transformation. Since each rule can only be applied once, there is a
finite set of compound transformations.

3.5 Overall Search

ADATE searches for new individuals to insert into the kingdom by expanding
the individuals already in it through compound transformations. Initially,
the kingdom contains only the start program, which naturally is the first
program to be expanded. Expansion of the different programs is an infinite
process, and it is the responsibility of the user to stop ADATE based on the
state of the kingdom. Figure 3.3 presents a graphical overview of the search
algorithm.

ADATE maintains a cost limit determining the number of individuals
to synthesize for a specific individual. It is divided equally between the
compound transformations, meaning the number of individuals synthesized
for each transformation is the cost limit divided by the number of compound
transformations. Initially, it is set to 1000.

In addition to the cost limit, ADATE maintains a collection of individuals
eligible for expansion for the current cost limit. The simplest individual in
this collection is selected for expansion and the resulting synthesized individ-
uals are possibly inserted into the kingdom depending on their properties.
After expansion, the individual is removed from the collection.

When the collection is empty, the cost limit is multiplied by 3.6 and the
individuals expanded for lower cost limits are allowed to be expanded again.
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This is called iterative-deepening where the cost limit first is increased when
all eligible expansions for a specific limit have been considered.

Iterative-deepening is also used during expansion for a specific compound
transformation, where simple transformations are applied before more com-
plex transformations. Because of iterative-deepening and how the kingdom
is managed, it is clear that ADATE has an inductive bias that favors simple
individuals over complex individuals.

3.6 Habitats

Habitats is a new feature in ADATE inspired by geographic speciation, also
known as Allopatric speciation in biology, where populations are isolated
from each other geographically and evolve separately. Thus, the same specie
may take different evolution paths according to the specific habitat they
live in. This has been observed in nature, and probably the most famous
observation was made by Charles Darwin on the Galapagos Islands where he
found different but related specifies of finches with different beaks specialized
to the food available in their habitat.

ADATE emulates geographic speciation by creating and managing five
separate habitats. Each habitat has a separate kingdom and different training
and validation sets. The data sets are created by applying 5-fold cross-
validation on the original data provided to ADATE, meaning there is no
overlap between the validation sets. Hopefully, this difference in data allows
evolution to take different paths for the different habitats.

Geographic separation of habitats in nature are not eternal and may break
down for some reason, allowing individuals from one habitat to migrate to
other habitats. This same notion of migration is adopted in ADATE, where
migration across habitats is permitted at different intervals. In that way, the
habitats can evolve separately as well as share discoveries with each other.

The success of habitats in ADATE depends on how well the individuals
perform in general. Accordingly, selecting an individual that performs well
in only one habitat is not preferable. Instead, some method must be applied
to either find an individual or a combination of individuals that are likely
to perform well in general. There are currently four such methods included
in ADATE, where one of them, ADATE boost, has been developed for this
thesis.
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3.6.1 Committee

Committee selects the individual with the best performance on the validation
set for each habitat, resulting in a committee with as many members as there
are habitats.

Voting is used to determine the output of a committee. Each individual
votes on its output and the output with the most votes is selected.

3.6.2 Shark Pool

Shark pool is similar to Committee in that both methods create a committee
of individuals and that they both use the same voting procedure to deter-
mine the output of the committee. However, shark pool does not select one
individual from each habitat. Instead, it extracts the individuals considered
relevant from all the habitats and places them in turn into a limited sized
pool.

If the limit of the pool is exceeded after insertion, one of the individuals
in it is discarded. This is determined by feeding them food in the form of
inputs and removing the individual that eats the least amount of food. The
size of the pool is equal to the number of members in the committee, and
the final committee consists of the individuals remaining in the pool after
inserting all the relevant individuals

All inputs contain the same amount of food, but an input is equally
divided between the individuals that eat it. Eating is allowed if the individual
returns the correct output for the input. In this way, the diversity of the pool
is maintained by favoring individuals that perform well on different inputs.

Shark pool uses three different methods, C, SR, and BC, for extracting
the relevant individuals from the different habitats. C extracts all individuals
from the habitats, but removes duplicate individuals. SR is identical to
C except individuals considered too big are excluded. BC, on the other
hand, extracts only the base individuals from the habitats while removing
duplicates and enforcing the same size restriction as SR. Of these three, BC
appears to create the most accurate committees.

The size of the shark pool is varied between 2 and 20.

3.6.3 ADATE Boost

ADATE boost is based on ADABoost.M1 and constructs a committee of in-
dividuals from the different habitats using a weighted data set. However,
instead of training each member of the committee specifically to the cur-
rent weights, it only selects the individual from the habitats that is the
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best according the weights. This fits better into the systematic and infinite
population-based search utilized by ADATE. The source code of ADATE
boost is available in appendix B.

The weights of the inputs are maintained as a distribution and always
sum to one, meaning the error rate of an individual is simply the sum of
the weights of the wrongly predicted inputs. Initially, the weights have the
same value since every input is regarded equally hard. However, they are
updated for each individual selected to be a member of the committee by
first multiplying every wrongly predicted input with e

1−e
where e is the er-

ror rate, and then normalizing all the weights so the sum of all weights is
one. Consequently, inputs correctly predicted decrease in weight, while the
wrongly predicted inputs increase.

If the currently selected individual has an error rate greater than 0.5, it
is discarded and any further construction of the committee is terminated.
This is done in order to guarantee that the training error of the committee
approaches zero as the number of individuals increases [40]. This guarantee of
the training error is meaningless if it has no relevance to the error in general.
However, it can be proven that the training error and the general error will
be close as long as the committee is not too ”large” and the individuals are
not too ”complex” [40].

The output of a committee is determined identically to ADABoost.M1
using majority voting, where each individual votes with a weight calculated
according to their error rate e as follows: − log( e

1−e
).

The maximum number of members in the committee is varied between 2
and 20.

3.6.4 Joint Selection

Joint selection differs from the other three methods discussed in that it in-
stead of forming a committee only selects a single individual. Selection is
performed in two steps. First, a filtering procedure is applied to remove all
the individuals that do not appear in at least a certain number of habitats.
This filtering procedure is based on the belief that an individual which ap-
pears and survives in different habitats has a greater chance of survival in
general than an individual appearing in only one. Second, the individual
with the best performance among the remaining individuals is selected.

The number of habitats the individuals must appear in is varied between
two and five.
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3.7 Summary

In this chapter, an introduction to the ADATE system has been given. Both
the external parts, ADATE-ML and the specification, and the internal parts,
population, transformations, the overall search and the habitats, have been
described, so that it should be possible to follow and understand the spec-
ifications and synthesized programs presented later in this thesis as well as
having an understanding of how ADATE synthesized these programs.

Note, several versions of ADATE have been utilized in this thesis, and
the habitats explained in the last section are only applicable to the version
of ADATE utilized in the next chapter where ADATE is applied directly to
classification.
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Synthesizing Classifiers

In this chapter, ADATE is applied directly to a set of classification problems
in order to synthesize classifiers. The specifications are generated automat-
ically and the traditional attribute-value encoding is used. In this way, the
usage of ADATE is similar to the usage of other classification algorithms, and
it is from this perspective it is compared to both simple and state-of-the-art
classification algorithms.

This chapter is outlined as follows: First, a description is given of the
data sets that ADATE is applied to. Second, the specification generation
procedure is explained in addition to how the specifications were executed
and the final classifiers were selected. Lastly, ADATE is compared to other
classification algorithms, first empirically according to accuracy and then
according to a set of other properties.

4.1 Data Sets

The 10 data sets are taken from the UCI machine learning repository [41].
They have a varying number of classes and contain a mix of continuous and
nominal attributes. Table 4.1 shows the properties of these data sets.

Thyroid Disease (all)

This data set was contributed by the Garavan Institute and J. Ross Quinlan.
The problem is to diagnose a patient for thyroid disease based on age, sex
and set of different health measures. There are 3772 instances, 4 classes, 6
continuous attributes and 22 nominal attributes. An additional attribute is
ignored since all its values are missing.

30
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Table 4.1: Properties of 10 real world data sets.

Name # Instances # Attributes # Continuous # Nominal # Classes
all 3772 28 6 22 4

cmc 1473 9 2 7 3
dna 3186 60 0 60 3
ger 1000 20 7 13 2
pag 5473 10 10 0 5
sat 6435 36 36 0 6
seg 2310 18 18 0 7
spa 4601 57 57 0 2
veh 846 18 18 0 4
yea 1498 8 7 1 10

Contraceptive Method Choice (cmc)

The data donated by Tjen-Sien Lim are based on the 1987 National Indonesia
Contraceptive Prevalence survey. In this survey, married women, either not
pregnant or not aware of it at the time, were interviewed about which of
the following three types contraception they used: no, short term or long
term contraception. The problem is to predict which of these contraception
types a woman would prefer based on demographic and socio-economic data.
There are 2 continuous attributes, 7 nominal attributes and 1473 instances.

Splice-junction Gene Sequences Database (dna)

G. Towell, M. Noordewier, and J. Shavlik donated this data base where
the instances consist of DNA sequences of 60 base-pairs, and the aim is to
determine what type of boundary there is in the middle of these sequences
with regard to splice-junction. Splice-junction involves the process of splicing
proteins together, where one part is removed (intron) and one part remains
(exon). As a result, there are three different boundary types: intron-exon,
exon-intron and none. The total number of instances is 3186.

German Credit Data (ger)

This data were contributed by Professor Dr. Hans Hofmann. The objective is
to assess an application for credit as either good or bad based on demographic
and economic data supplied in the form of 13 continuous and 7 numerical
attributes. All in all, there are 1000 instances.
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Page-blocks (pag)

This data set was created by Donato Malerba using a segmentation procedure
to extract the different blocks that compose a document. The aim is to
classify a block as either text, horizontal line, picture, vertical line or graphics.
Each block is described by 10 numerical attributes, and the data set consists
of 5473 blocks extracted from 54 different documents.

Landsat Satellite (sat)

This data set provided by Ashwin Srinivasan was generated using only a small
portion of the original Landsat Multi-Spectral Scanner imagery purchased
from NASA. Each instance is a 3x3 area of pixels in the imagery where the
aim is to determine the type of scenery the central pixel represents. Since
the satellite imagery contains four different spectral bands(two visible, and
two (near) infrared), each pixel is represented by four different values ranging
from 0 to 255, making the total number of attributes 36. Moreover, there
are 6 different classes and 6435 instances.

Image Segmentation (seg)

The Vision Group at University of Massachusetts created the data set by
randomly selecting instances from seven outdoor images. These images were
segmented pixel by pixel into one of the following classes: brickface, sky,
foliage, cement, window, path or grass. Similarly to Landsat Satellite, each
instance is a region of 3x3 pixels, but the instances do not contain the actual
pixel values as attributes. Instead, the instances contain different color means
together with other attributes describing the region. Furthermore, there are
18 continuous attributes and 2310 instances.

Spambase (spa)

The data contain 4601 spam and non-spam e-mails collected by Mark Hop-
kins, Erik Reeber, George Forman, Jaap Suermondt at Hewlett-Packard
Labs, 1501 Page Mill Rd., Palo Alto, CA 94304. Not surprisingly, the task
is to determine whether an e-mail is spam or not. Each e-mail is described
by 57 continuous attributes, where 48 of these hold the relative frequency of
specific words, 6 include the relative frequency of specific characters, and the
last 3 attributes contain the average length, the max length and the total
length of consecutive capital letters.
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Vehicle Silhouettes (veh)

The data set is based on a collection of silhouettes gathered at Turing Insti-
tute, Glasgow, Scotland by taking 846 pictures of different vehicles at varying
angles and orientations. These pictures were processed and 18 continuous at-
tributes describing each shape were extracted.

The object is to predict what kind of vehicle these attributes represent.
There are four different vehicles in the data set, a double decker bus, a
Chevrolet van, a Saab 9000 and an Opel Manta 400, where the SAAB 9000
and the Opel Manta 400 are the most similar in shape and should be the
most difficult to distinguish from each other.

Yeast (yea)

This database was donated by Paul Horton, and the aim is to determine the
localization of a yeast protein within a cell. There are 10 classes, 7 continuous
attributes, 1 nominal attribute and 1498 instances.

4.2 Specifications

A separate specification is generated for each of the 10 data sets using the
application, C5conv, which is bundled with ADATE. C5conv is used similarly
to the popular C4.5 decision tree system and operates on the same files,
namely a names file describing the type of the attributes and a data file
containing the instances. Based on these two files, C5conv generates an
ADATE specification for the data set automatically without needing any
knowledge of ADATE-ML or the inner workings of ADATE.

In the following sections, a general description is provided of how C5conv
defines the different parts of an ADATE specification. Some of the parts are
exemplified with excerpts from the specification generated for the thyroid
disease data set in order to make the description easier to follow. This
specification is presented completely in appendix C.

4.2.1 User-Defined Data Types

C5conv defines data types based on the attributes defined in the C4.5 names
file. Nominal attributes are defined as distinct data types and have a con-
structor for each nominal value. Continuous attributes, on the other hand,
are represented using the built-in real data type. If any of the attributes
contain missing values, a separate constructor is defined for the missing val-
ues. Figure 4.1 presents an example of three data types, where the first is a
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datatype age = age NONE | age SOME of r e a l
datatype sex = sexM | sexF | sex NONE
datatype on thyrox ine = on thyrox ine f | on thyrox ine t

Figure 4.1: Three of the data types defined by C5conv for the thyroid disease
data set.

(age SOME ˜0.3436123348017621 , sexF , on thyrox inet ,
query on thyrox ine f , on ant i thy ro id med i ca t i on f , s i c k t ,
pregnantf , t hy ro i d su rg e ry f , I131 t reatment f ,
query hypothyro id f , query hyper thyro id f , l i th iumf ,
g o i t r e f , tumorf , hypop i tu i ta ry f , psychf , TSH measuredt ,
TSH SOME ˜0.4968018566212889 , T3 measuredf , T3 NONE,
TT4 measuredt , TT4 SOME ˜0.24065420560747663 ,
T4U measuredt , T4U SOME ˜0.21014492753623187 ,
FTI measuredt , FTI SOME ˜0.16921119592875317 ,
TBG measuredf , r e f e r r a l s o u r c e o t h e r )

Figure 4.2: One of the inputs for the thyroid disease data set.

continuous attribute with missing values, the second is a nominal attribute
with missing values and the third is a nominal attribute without missing
values.

In addition, a data type is defined for the class attribute in exactly the
same manner as nominal attributes.

4.2.2 Inputs and Output Evaluation Function

The training and test inputs are created from the C4.5 data file by rep-
resenting each instance as tuple and converting all attributes to their cor-
responding ADATE-ML data type. In addition, all continuous values are
scaled to a value between -0.5 and 0.5 because of the way ADATE generates
constants. Figure 4.2 shows an example of a single instance for the thyroid
disease specification consisting of both continuous and nominal attributes.

Each input has a corresponding output in the form of a class. The output
is used by the evaluation function to determine whether a program is able
to classify an instance correctly, and the fitness value of a program is simply
the number of correct and wrong classifications made.
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fun f ( (X0age , X1sex , X2on thyroxine , X3query on thyroxine ,
X4on ant i thyro id medicat ion , X5sick , X6pregnant ,
X7thyro id surgery , X8I131 treatment ,
X9query hypothyroid , X10query hyperthyroid ,
X11lithium , X12goitre , X13tumor , X14hypopituitary ,
X15psych , X16TSH measured , X17TSH, X18T3 measured ,
X19T3 , X20TT4 measured , X21TT4 , X22T4U measured ,
X23T4U, X24FTI measured , X25FTI , X26TBG measured ,
X27 r e f e r r a l s ou r c e ) :
age ∗ sex ∗ on thyrox ine ∗ query on thyrox ine ∗
on ant i thy ro id med i ca t i on ∗ s i c k ∗ pregnant ∗
thy ro i d su rg e ry ∗ I131 treatment ∗
query hypothyro id ∗ query hyperthyro id ∗ l i th ium ∗
g o i t r e ∗ tumor ∗ hypop i tu i ta ry ∗ psych ∗
TSH measured ∗ TSH ∗ T3 measured ∗ T3 ∗
TT4 measured ∗ TT4 ∗ T4U measured ∗ T4U ∗
FTI measured ∗ FTI ∗ TBG measured ∗ r e f e r r a l s o u r c e

) : therapy =
raise D1

Figure 4.3: The initial f function for the thyroid disease data set.

4.2.3 The f Function

The f function takes an instance as input, and returns the class of the in-
stance given in. Initially, it is an almost empty function raising only an
exception. Figure 4.3 presents the initial f function for the thyroid disease
data set.

4.2.4 Available Functions

ADATE is permitted to use functions that operate on the built-in data types
rconst and real. The rconst functions include tor and rconstLess, where
tor converts a rconst to a real and rconstLess returns whether a real is
less than a rconst. The real functions consist of realLess, which returns
whether a real is less than another, and the typically arithmetic functions
realAdd, realSubtract, realMultiply and realDivision in addition to
the sigmoid function, which squashes a real value into to the interval be-
tween 0 and 1.

Furthermore, ADATE is allowed to use the constructors for the bool data
type and data type for the class.
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4.3 Execution of ADATE

The 10 ADATE specifications were executed on a cluster with 26 computers
over a period of approximately three weeks. The 26 computers have a total
of 40 CPU cores that are a mix of Intel Pentium D and Pentium 4, meaning
each specification was executed on 4 cores.

These specifications were executed using a special version of the ADATE
system utilizing habitats as described in section 3.6. This version employs
four different algorithms to select either a single individual or a set of indi-
viduals from the different habitats.

However, which of these algorithms should be used to select the final
classifier for a specific data set? One solution would be to select the classifier
that is the most accurate on the training set. Unfortunately, the results from
the training data are overly optimistic and a low error rate may be a result
of overfitting. Another solution would be to employ a separate validation
set, but this would decrease the number of instances, possibly yielding less
accurate individuals.

Instead of using any of these solutions, we decided to choose the com-
mittee with 15 base individuals produced by the shark pool algorithm. This
heuristic is based on observations made during the initial testing of the ver-
sion of ADATE with habitats, where it seemed to select the most accurate
committees.

4.4 Results and Analysis

ADATE is compared to 32 classification algorithms across the 10 data sets
previously described. These algorithms have previously been introduced in
section 2.2, and they are a part of the WEKA machine learning toolbox.

When executing these classification algorithms and ADATE, their default
parameters were utilized and no specific tuning was conducted. By avoiding
tuning, we hope to keep the execution as simple and fair as possible. However,
this means the performance of the algorithms may be improved, especially
for the more complex classification algorithms such as the neural network
algorithm, MultilayerPerceptron.

The data sets utilized in the comparison are divided in half into a training
and test set. Optimally, cross-validation should have been used to allow
utilization of all instances in testing and to ensure that the observed accuracy
is not a result of a preferable composition of the training set. However, the
high computational requirements of the ADATE system made it impossible
to execute ADATE several times for each data set within the time available
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for this thesis.
ADATE and the other classification algorithms are compared over mul-

tiple data sets using the Friedman test [42, 43, 44], which will try to reject
the null hypothesis of all algorithms producing equally accurate classifiers.
It is rank based and the algorithms are ranked for each data set according
to the accuracy of the classifier they produce, where the most accurate clas-
sifier receives the highest rank, rank 1. If two or more classifiers are equally
accurate, the average rank is assigned to them.

If the null hypothesis is rejected at significance level 0.05, the post hoc test
proposed by Holm [45] is employed to investigate which of the classification
algorithms that are truly different from ADATE.

Table 4.2 contains the ranks given to each of the classification algorithms
for each data set. The last column includes the average rank of each algorithm
for all the data sets, where a + means the algorithm is significantly better
than ADATE and a - means it is significantly worse. In addition, the error
percent of each algorithm for the different data sets is shown in table 4.3.

ADATE and LMT have the highest average rank across the 10 data sets
with a rank of 7.5. They perform relatively well for most of the data sets and
have never a rank worse than 14. However, ADATE has only a rank higher
than three in two of the data sets, and LMT has only a rank higher than
three in three of the data sets. Furthermore, the difference in average rank
is not that great between the algorithms, and ADATE is only significantly
better than the eight worst algorithms.

Although ADATE and LMT have the highest average rank, it is inter-
esting to note that they have far from the highest rank for each of the data
sets. Instead, it varies considerably from data set to data set which of the
algorithms that performs the best. For instance, K*, J4.8 and LWL have
in turn the highest rank for one data set, despite having low ranks for the
other nine data sets. These observations confirm the no-free-lunch theorem
[46], which states there is no universal classification algorithm producing the
most accurate classifier for all possible data sets.

The results of ADATE and its high average rank are rather surprising
considering the severe bugs in the synthesis algorithm of the ADATE version
utilized for these data sets. These bugs prevented ADATE from generating
and modifying constants cleverly, affecting the data sets with continuous
attributes negatively.

The only data set not affected by these bugs was dna. Surprisingly, the
rank for dna is not higher than the ranks for the other data sets, and the
ranks for six of the other data sets are higher. This difference might be a
result of the other classification algorithms performing exceptionally well on
data sets with only nominal attributes. Regardless, it shows the robustness
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Table 4.2: Ranks of the classification algorithms across 10 real world data
sets.

Methods all cmc dna ger pag sat seg spa veh yea Avg
LMT 14 7.5 1.5 8.5 10 13 9 8 1 2 7.5

ADATE 13 1 9 5 5.5 11.5 2 11.5 8 8 7.5
M5R 6.5 3.5 15 14.5 5.5 9.5 6 6 5 5 7.7

AdaBoost 10 17.5 12 13 2 3 1 1 6 21.5 8.7
SLogistic 20 7.5 1.5 8.5 12 15 9 8 4 2 8.8

M5P 2.5 3.5 10 16.5 8.5 8 9 11.5 7 12.5 8.9
RF 16 12 22 21 2 2 3 2 13 6 9.9

Bagging 4.5 15 14 18 2 6 15.5 4 11.5 12.5 10.3
JRip 10 5.5 8 11.5 8.5 14 19 8 21.5 2 10.8
MP 18.5 9 12 11.5 20 7 18 5 3 11 11.5

ADTree 10 2 5.5 29 5.5 17.5 15.5 10 14 9.5 11.9
Logistic 17 10 24 5 14 17.5 15.5 13 2 4 12.2
REPTree 2.5 16 23 14.5 5.5 16 22 16.5 9.5 16 14.2

J4.8 1 11 17 10 16 20 13 15 17 24 14.4
NBTree 4.5 21 3.5 7 15 24 20 19 16 18 14.8
PART 10 17.5 20.5 23 12 21 12 3 18 20 15.7
SMO 25 13.5 16 5 27 11.5 21 16.5 11.5 16 16.3

LinReg 25 13.5 7 2 26 27 25 24 9.5 16 17.5
K* 21 23 27 26 12 1 7 21 15 23 17.6
DT 10 5.5 18 30 17 23 23 14 21.5 19 18.1

Ridor 6.5 22 25 19 19 19 15.5 18 23 27 19.4
RBFN 18.5 24 12 16.5 23 22 24 25 24 7 19.6
NNge 15 32 26 21 18 9.5 11 20 26 21.5 20.0
LWL 31 19.5 5.5 1 30 25 26 26 25 14 20.3
NB 32 19.5 3.5 3 29 26 27 27 29 9.5 20.6
IBk 25 29.5 28 31.5 21 4.5 4.5 22.5 19.5 25.5 21.2-
IB1 25 29.5 29 31.5 22 4.5 4.5 22.5 19.5 25.5 21.4-
VFI 33 31 20.5 21 33 28 28 31 27 28 28.1-

OneR 25 25 30 33 24 29 30 29 28 31 28.4-
VP 29 27 19 26 31 32 31 33 32 30 29.0-
DS 25 33 31 26 25 31 32 28 30 29 29.0-
HP 30 27 32.5 26 28 30 29 30 31 32 29.6-

ZeroR 25 27 32.5 26 32 33 33 32 33 33 30.7-
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Table 4.3: Error percents of the classification algorithms across 10 real world
data sets.

Methods all cmc dna ger pag sat seg spa veh yea Avg
LMT 1.7 46.3 4.8 27.8 3.6 13 5.5 7.7 18.9 41.5 17.1

ADATE 1.6 44.3 5.7 27.4 3.3 12.9 4.4 8.1 26.0 42.9 17.7
M5R 1.4 45.1 7.3 29.4 3.3 12.7 4.8 7.6 24.6 42.2 17.8

AdaBoost 1.5 50.0 6.0 29.0 3.1 10.2 4.0 5.6 25.3 47.4 18.2
SLogistic 3.2 46.3 4.8 27.8 3.7 14.1 5.5 7.7 24.3 41.5 17.9

M5P 1.2 45.1 5.8 29.6 3.5 12.0 5.5 8.1 25.8 43.5 18.0
RF 2.1 48.8 10.7 30.6 3.1 10.1 4.6 6.1 30.3 42.3 18.9

Bagging 1.3 49.2 7.1 29.8 3.1 10.7 6.0 6.7 29.8 43.5 18.7
JRip 1.5 45.7 5.4 28.8 3.5 13.6 6.9 7.7 34.5 41.5 18.9
MP 3.1 47.6 6.0 28.8 4.8 11.3 6.5 7.2 23.6 43.4 18.2

ADTree 1.5 44.8 5.1 31.8 3.3 14.5 6.0 8.0 30.5 43.3 18.9
Logistic 3.0 48.0 12.2 27.4 3.8 14.5 6.0 8.3 21.5 41.6 18.6
REPTree 1.2 49.9 11.7 29.4 3.3 14.3 8.2 9.3 28.6 44.2 20.0

J4.8 1.1 48.6 7.9 28.0 4.1 15.1 5.9 9.0 31.9 50.4 20.2
NBTree 1.3 50.3 5.0 27.6 4.0 17.7 7.1 10 31.4 44.6 19.9
PART 1.5 50.0 9.4 31.0 3.7 15.2 5.7 6.6 33.3 45.8 20.2
SMO 3.6 49.0 7.8 27.4 8.2 12.9 8.1 9.3 29.8 44.2 20.0

LinReg 3.6 49.0 5.2 26.6 8.1 23.3 18.7 11.4 28.6 44.2 21.9
K* 3.5 51.0 23.5 31.6 3.7 9.6 5.2 11.0 30.7 49.3 21.9
DT 1.5 45.7 9.0 32.2 4.3 17.3 8.5 8.9 34.5 44.7 20.7

Ridor 1.4 50.8 12.9 30.0 4.6 14.8 6.0 9.8 35.5 51.1 21.7
RBFN 3.1 51.2 6.0 29.6 6.0 16.4 12.6 13.9 35.7 42.5 21.7
NNge 1.8 55.4 13.7 30.6 4.4 12.7 5.6 10.2 40.7 47.4 22.3
LWL 6.8 50.1 5.1 25.8 10.0 18.4 20.2 18.7 39.0 43.8 23.8
NB 6.9 50.1 5.0 27.0 9.4 20.1 21.5 20.1 58.4 43.3 26.2
IBk 3.6 55.2 24.3 32.8 4.9 10.3 4.7 11.3 34.0 50.7 23.2
IB1 3.6 55.2 26.5 32.8 5.2 10.3 4.7 11.3 34.0 50.7 23.4
VFI 9.2 55.3 9.4 30.6 11.8 27.6 24.1 26.1 48.5 53.6 29.6

OneR 3.6 53.3 36.9 33.6 6.7 40.9 36.7 22.0 50.4 60.4 34.5
VP 3.8 54.3 9.2 31.6 10.5 56.8 54.5 49.2 69.5 59.7 39.9
DS 3.6 59.8 38.6 31.6 7.0 55.5 73.5 21.7 61.9 58.1 41.1
HP 4.1 54.3 48.3 31.6 9.2 50.7 27.4 25.1 67.1 65.8 38.4

ZeroR 3.6 54.3 48.3 31.6 10.8 77.4 86.4 40.9 78.7 67.7 50.0
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of the population-based search utilized by ADATE, which is able to find
competitive classifiers even though there are severe bugs in the synthesis
algorithm.

4.5 Discussion

Although the accuracy of the induced classifiers is an important factor in
deciding which classification algorithm to use for a specific domain, it is not
the only factor and there might be other factors more important depending
on the situation.

In the next sections, some of these other factors are covered, and ADATE
is compared to other classification algorithms according to these factors. This
comparison is not complete, and its purpose is first and foremost to highlight
some of the advantages and disadvantages of using ADATE to synthesize
classifiers.

4.5.1 Readability

The readability of classifiers is important if there is a need for examination
of the classifiers produced by a classification algorithm. Such examination
may help to get a deeper understanding of the problem domain, but it may
also be used to assess the usefulness of the induced classifiers.

The classification algorithms utilized in this thesis create classifiers that
vary great in readability with decision trees and rule sets at one end and
artificial neural networks and SVMs at the other end. Decision trees and
rule sets are highly readable and naturally intuitive to humans, especially
rule sets, which remain highly readable despite size increase. Artificial neural
networks and SVMs, on the other hand, are complex mathematical models
that are hard to understand and often nearly impossible. Thus, it is difficult
to avoid “black box effects” of treating these classifiers as black boxes that
magically predict the correct class.

ADATE synthesize programs that fall somewhere in between these two ex-
tremes in terms of the readability. A synthesized program can be as readable
as decision trees since it is possible to represent decision trees in ADATE-ML
by nesting case expressions inside case expressions, inspecting one attribute
at a time until a class can be returned. This is, however, probably the sim-
plest and most readable program that can be generated and more complex
programs can be much harder to interpret, especially if advanced constructs
like recursion and auxiliary functions are used. Accordingly, it might be hard
to avoid “black box effects”.
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4.5.2 Flexibility

The flexibility of a classification algorithm relates to the degree the algorithm
and the classifier produced can be configured to the problem at hand. High
flexibility allows extensive customization of the classification algorithm for
a specific data set in order to produce the best possible classifier. However,
customization is hard, and it is not always apparent which impact the dif-
ferent changes will have on the classifier produced, often resulting in time
consuming tuning. Thus, in some circumstances, it might be preferable to
use a stringent algorithm that just works.

Flexibility and readability seem to be somewhat related, where algorithms
producing simple and readable classifiers are less flexible than algorithms
producing more complex and less readable classifiers. For instance, there
is little flexibility in traditional decision tree learners where configuration
is mostly limited to the amount of pruning employed, while there is great
flexibility in neural network algorithms where the structure of the network
and how the weights are trained can be configured.

Compared to the classification algorithms used in this thesis, ADATE is
probably the most flexible. For example, it allows the problem domain to
be accurately represented using algebraic data types and functions. Even
though ADATE is flexible, writing specifications and executing ADATE do
not have to be inherently hard since the flexibility can be utilized as needed.
First by producing, as in this thesis, a general specification using C5conv and
then gradually adding specific help functions and data types appropriate for
the domain.

4.5.3 Computational Requirements

The computational requirements of ADATE is much higher than the require-
ments of any of the other classification algorithms executed in this thesis. For
instance, when ADATE was compared empirically with other classification
algorithms in section 4.4, ADATE was executed on a cluster composed of 40
cores for approximately three weeks, while the other 32 classification algo-
rithms finished inducing the classifiers in little over two hours on a laptop
with a single core Pentium M 2 GHz CPU. However, contrary to the other
algorithms, ADATE searches indefinitely, which eventually may lead to dis-
coveries impossible to make with the other algorithms.

Even though ADATE needs vast computational resources in training,
the synthesized programs are fast to execute and comparable to classifiers
produced by other classification algorithms.
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4.6 Summary

In this chapter, we have shown how ADATE can be applied directly to classifi-
cation problems and synthesize classifiers in the form of programs. Although
the version of ADATE utilized had severe bugs, the synthesized classifiers
proved to be competitive with the classifiers produced by state-of-the-art
classification algorithms. However, considering the long execution time, it is
probably wise to investigate whether other simpler classification algorithms
are sufficient before utilizing the flexibility and the unique search provided
by ADATE.

The next chapter shows how ADATE can be used to improve existing
classification algorithms such as decision tree learning. This problem proba-
bly fits ADATE better considering the concrete need for auxiliary functions
and recursion.



Chapter 5

Improving Decision Tree
Learning 1

There are many types of existing classifier inducers that would be possi-
ble to improve through automatic programming, but decision tree inducers
have at least three beneficial properties, making them more suitable than
other algorithms. First, decision tree inducers are heavily based on heuris-
tics, suggesting there is room for improvements. Since they have been very
thoroughly researched, any generally valid improvements are a testament to
the benefits of an automated experimental approach and the limitations of
the human brain.

Second, the algorithmic complexity of decision tree inducers is relatively
low and they are reasonably fast in both training and classification, which
reduces the overall computational requirement for meta-learning through au-
tomatic programming.

Third, decision trees have a central place in numerous other classification
algorithms. For instance, there are rule inducers utilizing decision trees,
model tree inducers that create decision trees with models at the leaves,
and decision trees are often preferred in ensemble algorithms like bagging
and boosting [47]. As a result, potential improvements to a decision tree
algorithm could be incorporated into other algorithms as well.

As explained in section 2.2.4, decision tree learning is composed of build-
ing and pruning, where it seems pruning may have a greater potential for
improvement than building. Breiman et al. observed relatively little dif-
ference between the type of decision tree produced when different methods
for selecting the most promising attribute were used, and found it more im-
portant to choose the right pruning algorithm [18]. Therefore, we chose to
improve decision tree pruning.

This chapter first gives a description of pruning and three of the most

43
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popular pruning algorithms. Next, the specification developed for improving
decision tree pruning are explained along with the resulting synthesized prun-
ing algorithm. Lastly, this algorithm is evaluated empirically on synthetic
and real world data sets.

5.1 Pruning

The biggest problem in classifier induction is to overly adapt the classifier
to specific details of the training set. In order to avoid such overfitting,
decision tree learning employs pruning, which, as the name suggests, involves
simplification of a decision tree by eliminating seemingly overfitted branches.
There are two approaches to pruning, called pre-pruning and post-pruning.

Pre-pruning takes place during tree induction and tries to stop the induc-
tion process as soon as overfitting occurs. Thus, it avoids wasting resources
on inducing parts of the tree that never will be used. However, it suffers
from the horizon effect [48] in that it cannot explore the result of allowing
the induction process to continue, making premature and overdue stopping
hard to avoid [18].

Post-pruning, on the other hand, takes place after the induction process
has ended and tries to simplify the tree by removing superfluous nodes. In
this way, it wastes more resources than pre-pruning, yet, at the same time,
it is more robust in simplification of decision trees because it has access
to the full tree, allowing thorough exploration of the impact of removing
nodes. Since the increased robustness normally out-weighs the increased
computation, post-pruning is preferred over pre-pruning. Therefore, we will
focus on improving post-pruning in this thesis.

5.1.1 Existing Pruning Algorithms

Most post-pruning algorithms are implemented quite similarly. They navi-
gate either top-down by starting at the top of the tree and moving downwards
to the leaves, or bottom-up by starting at the bottom of the tree and moving
upwards to the root. During navigation, the true error rate is estimated for
the different parts of the tree to decide which should be retained and which
should be pruned.

Although estimation of the true error rate varies considerably between
pruning methods, they normally base their estimation either on the training
set or on a distinct validation set. Since the validation set is separate, the
measurements from it are not biased as opposed to the measurements from
the training data. This may explain the observations made by Mingers in
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his comparison of pruning algorithms which lead him to conclude that the
pruning algorithms utilizing a separate validation set produce more accurate
trees [49].

However, in his study, Mingers did not take into account the lower amount
of data available for training when a validation set is used, possibly resulting
in a worse starting point. Another study performed by Esposito, Malerba and
Semeraro took this into consideration and came to the opposite conclusion
of Mingers [50].

In the following sections, three of the most popular pruning algorithms
are explained. These vary both in navigation direction and what they base
their error rate estimate on.

Reduced Error Pruning

Reduced error pruning (REP) is a simple pruning algorithm developed by
Quinlan [51], which intuitively estimates the error of a tree as the number of
misclassifications made when the tree is applied to a separate validation set.
It traverses the tree bottom-up, and for each encountered internal node, it
prunes the current node n by replacing n with a leaf predicting the majority
class if it does not increase the number of errors made by the tree.

Because only the validation set is used to decide whether some parts of
a tree are overfitted, it is important that the validation set is big enough
so that the general patterns of the domain included in the training set also
are included in the validation set. If the validation set is too small, REP
might prune parts of the tree that only cover rare cases in the training set
since these rare cases are not represented in the validation set. If, on the
other hand, it is too large, it might result in more overfitting in the initial
unpruned tree.

Pessimistic Error Pruning

Pessimistic error pruning (PEP) is a top-down algorithm designed by Quinlan
[51], which for each internal node estimates and compares the error rate of
pruning and retaining the current node. If the error rate of pruning the node
is within one standard deviation1 of the error rate of retaining the node, the
current node is pruned and further traversal is not required. In this way, the
execution time of the algorithm may be significantly lower than the execution
time of other pruning algorithms that invariably traverse the whole tree.

PEP estimates the true error rate of a tree by applying the continuity
correction for the binomial distribution to the error rate observed in train-

1The standard deviation is calculated according to the binomial distribution
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ing. The use of the continuity correction has no statistical foundation, but
is merely a heuristic to make the error rate observed in training more pes-
simistic.

Let t be a tree, n(t) denote the number of instances reaching t, e(t) be the
number of misclassifications made by t and c(t) be the children of t. Then,
the error rate of a leaf is estimated as:

r(t) =
e(t) + 1

2

n(t)

and the error rate of an internal node is estimated as:

R(t) =

∑
s∈c(t)

[
e(s) + 1

2

]
n(t)

Error Based Pruning

Error based pruning (EBP) is the pruning algorithm that is used in Quinlan’s
popular C4.5 decision tree system [16]. It traverses the tree bottom-up while
making a choice at each internal node of whether to retain the node as it
is, replace it with a leaf containing the majority class, or replace the node
with the most frequently used child according to the training set, a process
known as tree grafting. The operation with the lowest estimated error rate
is performed.

Estimation of the true error rate of a leaf is based on some questionable
statistical reasoning around the error rate observed in the training set. As-
suming the observed error rate is governed by a binomial distribution, the
estimated error rate is the upper limit of a confidence interval with a specific
confidence level, where 25% is the default. The estimated error rate of a tree
is the sum of estimated error rates of the children weighted by the fraction
of the instances reaching each particular child.

This algorithm is probably one of the best pruning algorithms created
and it compared favorably to other pruning algorithms in [50]. Accordingly,
we chose EBP as the start program for ADATE.

5.2 Specification

The following four sections describe the most important parts of the pruning
specification. This specification is listed completely in appendix D. The fifth
and last section, gives an overview of the alternative specifications considered.
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5.2.1 User-Defined Data Types

There are five user defined data types: class, split point,
calculated distribution, c tree list and c tree. The first four data
types contain information about the different parts of a decision tree, where
class represents a single class value in the form of an integer; split point

corresponds to a test on a specific attribute; calculated distribution con-
tains the following information about the training instances reaching a par-
ticular node: the majority class, the number of instances of the majority class
and the total number of instances; and c tree list holds a list of c trees
because polymorphic lists are not allowed in ADATE-ML.

The last data type, c tree, represents the decision tree itself. It can
either be a decision node (CDN) or a leaf node (CLeaf). A decision node is
an internal node, and contains a split point, a calculated distribution

and a c tree list holding the children. A leaf node, on the other hand, is a
terminal node and contains only a calculated distribution and a class.

5.2.2 The f Function

The f function is a partial implementation of EBP, where tree grafting is
omitted to keep the computational requirements low. Tree grafting is not
initially expensive since the distribution is precalculated, but as soon as it
is performed, the distribution must be recalculated for all the new instances
reaching the subtree. Figure 5.1 presents a more readable and compact im-
plementation written in Standard ML of the original f function listed in
appendix D.

The f function takes an unpruned decision tree as input and returns a
transformed decision tree along with an estimated error rate for the tree.
Optimally, the f function should transform the unpruned decision tree to
the simplest, most accurate tree possible. Nonetheless, there is nothing pre-
venting ADATE from creating a function that adds nodes and makes the tree
bigger.

Two auxiliary functions are utilized by the f function. The first func-
tion, pruneCTreeList, iterates over the trees given to it, performs pruning
on them and returns a tuple containing the sum of all the returned error
estimates and a c tree list with all the pruned trees.

The second function, errorEstimate, takes n, the number of instances
that reach a given tree node, and c, the number of these instances that are
correctly classified by the subtree corresponding to the node, as arguments.
It calculates the upper limit error estimate of a node by approximating the
binomial distribution using the normal distribution, but it performs this cal-
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culation rather naively. First, the continuity correction of adding 0.5 to the
number of errors is not used. Second, the normal distribution yields inappro-
priate values when the number of errors is either close to zero or the number
of instances. For these special cases, the binomial distribution should be used
directly.

We started ADATE with this “naive EBP” to see if it would be automat-
ically improved to an algorithm competitive with EBP or even superior to
it.

5.2.3 Available Functions

The functions available to ADATE during synthesis of the f function fall
into two groups. The first group comprises constructors and functions for
creation and manipulation of the built-in data types in ADATE, including
constructors for boolean values; boolean functions for comparing real val-
ues and constants such as rconstLess and realLess; tor for converting a
constant to a real; and arithmetic functions for manipulation of real values
like realAdd, realSubtract, realMultiply, realDivide, sqrt, tanh and
ln.

The second group contains constructors for the user-defined data types
c tree list, calculated distribution and c tree. These constructors
allow structural changes to trees, which is required to enable any form of
pruning. On the other hand, the constructors for the class and split point

data types are excluded since they can easily be used to construct ill-defined
decision trees by producing non-existing classes and split points.

5.2.4 Inputs and Output Evaluation Function

In this paper, an ADATE training input consists of a decision tree to be
pruned. Associated with each tree is an unique synthetic data set which is
split into a training partition and a test partition. Each decision tree was
generated by ID3 using the training partition before starting ADATE. When
ADATE is running, each pruned tree returned by the f function is tested
on its associated decision tree test partition. The sum of the classification
errors that all the pruned trees makes on their corresponding test partition
determines how good the f function is and is used as a heuristic evaluation
function that guides the ADATE search for better pruning algorithms.

There does not seem to be a correspondence between the type of decision
tree learner used and the pruning algorithm [49], so any synthesized pruning
algorithm working well with ID3 should work just as well with any other
decision tree learner.
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fun pruneCTreeList CTreeListNi l = ( 0 . 0 , CTreeListNi l )
| pruneCTreeList ( CTreeListCons ( x , xs ) ) =
l et

val ( prunedError , prunedTree ) = f ( x )
val ( prunedErrors , prunedTrees ) = pruneCTreeList ( xs )

in
( prunedError + prunedErrors , CTreeListCons ( prunedTree ,

prunedTrees ) )
end
and e r rorEst imate ( ( c , n ) : r e a l ∗ r e a l ) : r e a l =
l et

val e = (n − c ) / n
val z = 0.69
val z2 = z ∗ z
val va l1 = ( ( e / n) − ( ( e ∗ e ) / n ) ) + ( z2 / ( 4 . 0 ∗ n ∗ n) )
val va l2 = ( e + z2 / ( 2 . 0 ∗ n) ) + z ∗ ( s q r t va l1 )
val va l3 = 1 .0 + z2 / n

in
va l2 / va l3

end
and f ( curTree as CLeaf (

Ca lcu la tedDis t ( , numInstMajorityClass , num
) , ) ) =
( num ∗ e r rorEst imate ( numInstMajorityClass , num) , curTree )

| f ( CDN( sp l i tPo in t , d i s t , c h i l d r en ) ) =
l et

val Calcu la tedDis t ( c l a s s , numInstMajorityClass , num ) = d i s t
val ( ch i ldErrorOnlyMult ip l i ed , prunedChildren ) =

pruneCTreeList ( ch i l d r en )
val ch i l dEr ro r = ch i ldErro rOn lyMul t ip l i ed / num
val e r r o r = errorEst imate ( numInstMajorityClass , num)

in
i f ch i l dEr ro r < e r r o r then

(num ∗ ch i ldError , CDN( sp l i tPo in t , d i s t , prunedChildren ) )
else

(num ∗ e r ror , CLeaf ( d i s t , c l a s s ) )
end

Figure 5.1: The initial f function, which is a partial and naive implementation
of EBP. The implementation is rewritten in Standard ML to make it easier
to read.
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A synthetic data set is generated as follows. First, we create a two-layer
feed forward neural network. This network always has exactly two output
nodes but we chose to vary the number of input nodes, which equals the
number of input attributes, between 10 and 12. We only use 0 or 1 as network
inputs and also a binary target attribute, the value of which is given by the
output node that has the greatest value for the given neural net inputs. The
neural net weights are chosen randomly between -0.5 and 0.5. Thus, each
output node is simply a random linear combination of the input nodes. A
complete synthetic data set is obtained by feeding the network with all 2n

inputs for a given number n of input attributes.
As mentioned above, each data set is divided into a training partition

and a test partition. The test partition is exactly half of the original data
set, while we vary the portion of the other half utilized for training from 0.2
to 0.35 in steps of 0.05. In order to emulate how certain information often is
missing from real world data sets, some attributes are removed completely
from the data set. The number of attributes removed is varied between 0
and 4. This removal of attributes is an attempt to model the indeterminism,
caused by not having sufficiently many sufficiently well chosen attributes,
that is encountered in most real world data sets.

By using all combinations of the number of input attributes, the fraction
used for training and the number of removed attributes, 60 different data sets
are created. This procedure is repeated many times to create larger numbers
of ADATE training, validation and test inputs, which all are multiples of 60
in this paper.

5.2.5 Alternative Specifications

Before deciding on this implementation of the specification, two alternative
specifications were considered. The first of these two specifications was basi-
cally identical to the final specification except it used the auxiliary function
errorEstimate as f function and moved the pruning algorithm inside the
main function. In this way, it is more restrictive in terms of the amount of
modification possible to the pruning algorithm, which can both be an advan-
tage and disadvantage depending on the need to make changes outside the
errorEstimate function.

The second specification also used the errorEstimate function as f func-
tion, but it utilized another method for testing the performance of the synthe-
sized programs. Instead of representing the problem as pruning an unpruned
tree, the problem is simplified to only concern whether pruning should be
employed at a particular node. Thus, each input is a tuple holding the dis-
tribution for the current node and the distributions for its children.
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In order to evaluate these specifications, we executed them in parallel on
a cluster for approximately a week. We compared them both in performance
and the degree of overfitting in the population. The programs produced ac-
cording to the final specification performed the best, and there seemed to be
less overfitting in the population compared to the other two populations. Of
the other two specifications, there seemed to be more overfitting in the pop-
ulation for the specification with the simplified evaluation scheme, possibly
contributed by the fact that the simplification makes it easier for a program
to perform well by chance.

5.3 Execution of ADATE

The ADATE system was executed on a cluster with 16 computers over a
period of three weeks. The 16 computers have a total of 22 CPU cores that
are a mix of Intel Pentium D and Pentium 4.

Before performing this execution, we conducted a set of small experiments
in order to try to determine the optimal size of the training set with respect
to both overfitting and synthesis speed. The size should be small to obtain a
short execution time, but at the same time it should be big enough to avoid
excessive overfitting. Three specifications with 60, 120 and 240 instances
were executed, and the 120 and 240 specifications yielded the most accurate
programs on a separate synthetic validation set with 1200 instances. Al-
though the 120 specification did not show any signs of excessive overfitting,
the danger of eventual overfitting when more execution time is allowed lead
us to choose 240.

During execution of ADATE, the training size was increased to 480 and
eventually to 960 as we observed some signs of overfitting by studying how
the classification accuracy on the validation set increased with program size.

5.3.1 Selecting the Pruning Algorithm

The ADATE population contains many programs at any given time. There-
fore, some method must be applied to finally select the program that is likely
to produce the most accurate decision trees in general.

Since more computation time is available per program during this final
selection, we chose to use a larger validation set with 15000 instances and
selected the program with the total least number of classification errors on
this set.

The selected pruning algorithm has a structure similar to that of the
initial pruning algorithm and the logic of the tree traversal algorithm was
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fun pruneCTreeList CTreeListNi l = (0 .4026881 , CTreeListNi l )
| pruneCTreeList CTreeListCons ( x , xs ) =
l et

val ( prunedError , prunedTree ) = f ( x )
val ( prunedErrors , prunedTrees ) = pruneCTreeList ( xs )

in
( prunedError + prunedErrors ,

CTreeListCons ( prunedTree , prunedTrees ) )
end

Figure 5.2: The pruneCTreeList function of the synthesized pruning algo-
rithm produced by ADATE.

fun e r rorEst imate ( c , n ) =
l et

val v1 = tanh ( tanh ( tanh ( (n − c ) / n ) ) )
val v2 = sq r t ( tanh ( tanh ( sq r t ( n ) ) ) )
val v3 = tanh ( sq r t ( s q r t ( c ) ) )

in
( v1 + v2 ) / v3

end

Figure 5.3: The errorEstimate function of the synthesized pruning algo-
rithm produced by ADATE.

not changed by ADATE. This pruning algorithm is given in its original form
in appendix E.

However, ADATE modified the initial auxiliary functions pruneCTreeList
and errorEstimate. We rewrote these two functions in Standard ML where
we changed the ADATE generated variable names to make the functions
more readable and compact. The pruneCTreeList is presented in figure 5.2
and it is almost identical to its initial version, but instead of starting from
zero when summing the error estimates, it starts from 0.403. This increase
in error might increase the amount of pruning performed.

The errorEstimate function generated by ADATE is different from any-
thing we have seen and still apparently quite practically useful for pruning.
It is given in Figure 5.3 and consists of an arithmetic expression that is
somewhat hard to interpret.

Note that the tanh function, being a scaled version of a sigmoid function,
often is used in the nodes of feed forward neural nets and that weight opti-
mization for such nets typically results in a “black box effect” that makes the
nets hard to analyze in detail. Unfortunately, the automatically synthesized
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function in Figure 5.3 also suffers from this black box effect.
Thus, we may notice experimentally that this ADATE generated function

results in better pruning than the confidence interval upper limit estimation
used by the EBP of C4.5, but it is hard to analyze it theoretically.

5.4 Results and Analysis

The synthesized pruning algorithm (SYNTH), which was partially shown in
Figures 5.2 and 5.3, is evaluated empirically across both synthetic and real
world data sets by comparing it with four other pruning algorithms, namely
no pruning (NOP), the naive implementation of EBP (NEBP) that ADATE
used as its initial program, EBP without tree grafting (WEBP) and EBP
without tree grafting(TWEBP), where the confidence level is tuned using 10
fold cross-validation. In addition, it is compared to 31 of the 32 classification
algorithms utilized in section 4.4 when empirically evaluating synthesized
classifiers. VFI is not used since it was not able to produce a classifier for all
the data sets.

The algorithms are compared over multiple data sets using the Fried-
man test as in section 4.4, and it will try to reject the null hypothesis of all
algorithms being equally accurate. If the null hypothesis is rejected at sig-
nificance level 0.05, the Holm post hoc test is employed to investigate which
of the algorithms that are truly different from SYNTH.

5.4.1 Synthetic Data

The synthetic data sets for testing are generated using the same procedure
that was employed when creating the training and validation sets for ADATE,
but the procedure is repeated many more times. We used 1000 repetitions
when comparing SYNTH with other pruning algorithms, resulting in 60000
new data sets with 12000 data sets for each specific number of attributes to
remove. In this way, it is possible to determine with statistical significance
whether the synthesized pruning algorithm produces more accurate trees in
this domain compared to the other pruning algorithms.

However, we used only 16 repetitions to generate the data sets when
SYNTH is compared with other classification algorithms in order to keep the
execution computationally feasible. This yielded a total of 960 data sets with
196 data sets for each specific number of attributes to remove.
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Table 5.1: Average ranks of the pruning algorithms on synthetic data.

#Removed Attribs #Data sets NOP NEBP WEBP TWEBP SYNTH
0 12000 3.426- 2.936- 3.078- 3.010- 2.549
1 12000 3.885- 3.318- 2.618- 2.632- 2.548
2 12000 4.245- 3.532- 2.360+ 2.395+ 2.469
3 12000 4.445- 3.534- 2.278+ 2.360 2.384
4 12000 4.483- 3.330- 2.349+ 2.440- 2.398

Total 60000 4.097- 3.330- 2.536- 2.567- 2.470

Pruning Algorithms

Table 5.1 contains the average rank of the pruning algorithms for each of the
data sets where a specific number of attributes are removed. The last row
shows the average rank of the algorithms for all the 60000 data sets. A +
means the algorithm is significantly better than SYNTH, and a - means it is
significantly worse.

The ADATE generated SYNTH pruning performs overall better than all
the other pruning algorithms. It has a rank considerably higher than that of
NOP and NEBP, both in total and for each type of data sets where a specific
number of attributes are removed.

This shows that the ADATE system has been able to significantly improve
the initial pruning algorithm, NEBP, for this domain. On the other hand,
the difference in rank is not that great compared to WEBP and TWEBP,
and it has a somewhat lower average rank than that of WEBP for the data
sets where two, three, and four attributes are removed. However, SYNTH
performs so much better on the data sets where no attributes are removed
that it overall produces the most accurate decision trees.

A surprising observation is that WEBP has a slightly higher rank than
that of TWEBP on average. This is probably caused by the limited number
of training instances for some of the data sets. For instance, the smallest
training set contains only 102 training instances.

Other Classification Algorithms

Table 5.2 contains the average rank of the 5 pruning algorithms and the
31 classification algorithms for the data sets where a specific number of at-
tributes are removed. The last column includes the average rank of the
algorithms across all the 960 data sets, and the algorithms are ordered ac-
cording to this column. A + means the algorithm is significantly better than
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SYNTH, and a - means it is significantly worse.
SYNTH is worse than 16 of the 36 algorithms and it is outperformed by

15 of these algorithms. It has an average rank of 18.2, which is considerably
lower than 6.3 for the best ranked algorithm, Simple Logistic.

Still, these results are not surprising considering the underlying model is
basically a linear combination of the attributes, and there is a clear tendency
in the type of algorithms that perform well. 11 of the 15 algorithms make
use of functional models in some way, 3 of the algorithms are related to naive
bayes and only one algorithm is actually using traditional decision trees with
classes at the leaves. Accordingly, the inductive bias of traditional decision
tree learners is probably not suited for these data sets, and it is unrealistic to
expect ADATE to modify the inductive bias of decision tree learning to such
an extent that SYNTH becomes significantly better than other classification
algorithms for these data sets.

Despite being outperformed by 15 algorithms, SYNTH is far from the
worst algorithm and outperforms a collection of 17 decision tree learners,
rule learners and instance-based methods. This include two of the pruning
algorithms previously compared to SYNTH and the results resemble the
previous results, where NOP and NEBP differ vastly in rank compared to
SYNTH.

The last two pruning algorithms, TWEBP and WEBP, on the other hand,
are no longer found to be significantly worse than SYNTH, and WEBP is
slightly better than SYNTH, although not significantly. This shows that
SYNTH, TWEBP and WEBP perform almost the same, and it is only pos-
sible to statistically separate them by utilizing a great number of data sets
such as 60000.

5.4.2 Real World Data

The 14 data sets are taken from the UCI machine learning repository [41].
They have only discrete attributes since continuous attributes are not sup-
ported by the decision tree inducer, ID3, learning the initial unpruned de-
cision trees. In addition, missing values are not supported by ID3, so any
missing values are replaced with the most frequent attribute value.

Data Sets

The specific properties of the data sets are presented in table 5.3.

Agaricus-Lepiota (aga) Jeff Schlimmer contributed this data set, and it
contains 8124 different mushrooms belonging to the Agaricus and Lepiota
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Table 5.2: Average ranks of five pruning algorithms and 31 other classification
algorithms across synthetic data sets.

Methods 0 1 2 3 4 Avg
SLogistic 4+ 5.5+ 5.6+ 7.6+ 8.9+ 6.3+
Logistic 4.4+ 6+ 5.6+ 7.3+ 8.8+ 6.4+
LMT 4.1+ 5.7+ 5.9+ 7.8+ 9.3+ 6.6+
SMO 6.3+ 7.2+ 6.9+ 9.5+ 11.1+ 8.2+
M5P 10.2+ 8.8+ 8+ 8+ 9.5+ 8.9+
M5Rules 10.4+ 8.6+ 8.6+ 8.7+ 9.6+ 9.2+
LinReg 12.9+ 11.4+ 9.3+ 10.8+ 9.9+ 10.8+
NB 14.9+ 12+ 11+ 10.3+ 10.4+ 11.7+
VP 12.8+ 12.6+ 11.1+ 11.5+ 11.1+ 11.8+
ADTree 12.4+ 11.5+ 12.1+ 11.2+ 13.5+ 12.1+
NBTree 14.6+ 15.3+ 15.4 14.4+ 13.5+ 14.7+
LWL 17.4 15.4+ 13.3+ 13+ 12.1+ 14.2+
RBFN 14.6+ 15.7+ 15.4 15.9 17.7 15.9+
Bagging 17.2 16.1 15.9 16.3 15.8 16.3+
MP 5.5+ 13.8+ 18.9 21.9- 23.6- 16.7+
WEBP 20.1 19 18.1 17.4 16.2 18.1
SYNTH 19.3 18.9 18.3 17.7 16.6 18.2
J48 20.3 18.9 18.7 17.2 16.5 18.3
TWEBP 20.4 18.9 18.2 18.3 17.2 18.6
PART 18.4 19.2 20.8 21.1- 22- 20.3-
AdaBoost 14.6+ 18.5 21.5- 23.4- 24.1- 20.4-
DT 24.3- 21.8 18.9 19.5 19 20.7-
JRip 24.5- 22.1- 21.4- 20.1 18.4 21.3-
REPTree 26.4- 22.9- 21.5- 18.8 19.5 21.8-
RF 16.8 18.7 22- 24.7- 27.2- 21.9-
NEBP 19.8 23.1- 24.2- 23.9- 20.9- 22.4-
K* 25.3- 24.3- 22.8- 21.5- 20.4- 22.8-
Ridor 25.3- 23.2- 22.9- 22.3- 20.2- 22.8-
NNge 17.8 20.9 24.5- 27.7- 30.1- 24.2-
NOP 21.1 25.3- 26.4- 28.4- 28.3- 25.9-
IBk 28.8- 27.8- 26.7- 25.8- 26.9- 27.2-
OneR 32- 30.9- 29.8- 26.6- 24.8- 28.8-
DS 32- 30.9- 29.9- 26.8- 24.7- 28.8-
ZeroR 32.6- 31.7- 31- 27.9- 26.1- 29.9-
IB1 31.4- 31.1- 31.7- 31.6- 31.2- 31.4-
HP 33.2- 32.7- 33.9- 31.1- 30.8- 32.3-
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Table 5.3: Properties of the 14 nominal data sets.

Name # Instances # Attributes Missing # Classes
aga 8124 22 yes 2
aud 226 69 yes 24
car 1728 6 no 4
dna 3186 60 no 3
hay 160 4 no 3
krkp 3196 36 no 2
mon1 556 6 no 2
mon2 601 6 no 2
mon3 554 6 no 2
nur 12960 8 no 5
pro 106 57 no 2
soy 683 35 yes 19
tic 958 9 no 2
vot 435 16 no 2

Family. The physical properties of each mushroom are described through 22
nominal attributes, and the objective is to determine whether a mushroom
is poisonous or editable.

Audiology (aud) This data set was donated by Ross Quinlan after stan-
dardizing the attributes in the original data set contributed by Professor
Jergen at Baylor College of Medicine. The problem is to diagnose a patient
in the field of audiology by considering 69 nominal attributes. There are 226
instances, and 24 different diagnoses to choose between.

Car (car) The car data set was contributed by Marko Bohanecw, where the
objective is to evaluate a car based on six attributes representing properties
like price, comfort and safety. There are 4 different classes and a total of
1728 instances.

Splice-junction Gene Sequences Database (dna) Dna has been pre-
viously explained in section 4.1

Hayes-roth (hay) This database was created by Barbara and Frederick
Hayes-Roth and contributed by David W. Aha. It contains 160 instances, 4
nominal attributes and 3 different classes.
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King-rook vs King-pawn (krkp) This data set donated by Rob Holte
consists of 3196 chess end-games, where the white player has the king and
rook left and the black player has the king and pawn left. The pawn is
located in square A7 and it is the white player’s turn. The objective is to
determine whether the white player can win considering the position of the
pieces described in terms of 36 nominal attributes.

Monks-1 (mon1) This data set was artificially created and donated by
Sebastian Thrun at Carnegie Mellon University. The objective is to deter-
mine whether a robot described by six nominal attributes is in a specific
group or not. An underlying rule, different for each of the three monk data
sets, determines which of the robots that are members of this group. There
are a total of 556 instances.

Monks-2 (mon2) Monks-2 has similar properties as Monks-1, but it has
601 instances.

Monks-3 (mon3) This data set is generated similarly to Monks-1 and
Monks-2 except 5% noise is injected to the classes. It has a total of 554
instances.

Nursery (nur) Marko Bohanec and Blaz Zupan donated this data set, and
it is created from an underlying hierarchical decision model used in Slovenia
to objectively assess applications for nursery school. Each application is
structured into three groups: employment, family structure and finance, and
social and health of the family. These groups have eight underlying attributes
that are included in the data set. There are 5 different classes and 12960
instances.

Promoters (pro) This data set was donated by M. Noordewier and J.
Shavlik, and the aim is to determine whether a DNA sequence is a E. Coli
promoter. Each DNA sequence has 57 base-pairs, and there are 106 instances
in the data set.

Soybean (soy) Ming Tan and Jeff Schlimmer contributed this data base,
where the problem is to diagnose the type of soybean disease according to a
set of symptoms encoded in 35 attributes. There are 19 different classes and
183 instances.
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Table 5.4: Ranks of each pruning algorithm on real world data sets. Obvi-
ously, smaller numbers are better.

Data sets NOP NEBP WEBP TWEBP SYNTH
aga 3(0) 3(0) 3(0) 3(0) 3(0)
aud 2(24.5) 2(24.5) 4(28.4) 5(28.9) 2(24.5)
car 2.5(5.6) 2.5(5.6) 5(6.3) 4(5.7) 1(5.4)
dna 5(8.4) 4(7.3) 1.5(6.1) 1.5(6.1) 3(6.9)
hay 4.5(28.8) 4.5(28.8) 1.5(27.5) 1.5(27.5) 3(28.1)
krkp 1.5(0.3) 1.5(0.3) 5(0.5) 3.5(0.4) 3.5(0.4)
mon1 3(2.2) 3(2.2) 5(2.9) 1(2.0) 3(2.2)
mon2 1.5(29.3) 1.5(29.3) 4.5(34.3) 4.5(34.3) 3(30.1)
mon3 5(2.7) 2.5(1.1) 2.5(1.1) 2.5(1.1) 2.5(1.1)
nur 1(1.2) 2.5(1.5) 5(3.2) 4(2.4) 2.5(1.5)
pro 2(25.2) 3(25.3) 5(30.3) 4(26.4) 1(23.5)
soy 4(7.9) 2.5(7.8) 2.5(7.8) 5(8.1) 1(7.5)
tic 4.5(14.9) 4.5(14.9) 2.5(14.8) 1(13.9) 2.5(14.8)
vot 5(6.7) 4(6.4) 2(4.8) 1(4.4) 3(5.1)
Avg 3.180(11.3) 2.929(11.1) 3.500(12.0) 2.964(11.5) 2.430(10.8)

Tic Tac Toe (tic) This data set supplied by David W. Aha contains 958
different tic tac toe end-games, where the task is to determine whether player
1, who started, has won. There are 9 attributes, one for each cell containing
x for player 1, o for player 2 and b for blank.

House Votes (vot) This database was donated by Jeff Schlimmer and con-
tains voting records from 1984 United States Congressional Voting Records
Database. The problem is to determine whether a congress man is either a
democrat or republican according to how this person voted in 16 key areas.
There are 435 instances in total.

Results

Table 5.4 shows the ranks given to each pruning algorithm for the different
data sets according to the average error percent found using 10 fold cross-
validation. This error percent is shown in parenthesis. The last row includes
the average rank and error percent of the algorithms across all data sets.

SYNTH performs better than the other pruning algorithms with a total
average rank of 2.4 compared to 2.9 for the best of the others. Still, there is
not enough statistical evidence to conclude that some of the algorithms are
truly different from one another for these real world data sets and the null
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Table 5.5: Average number of nodes in the pruned trees for the pruning
algorithms on real world data sets.

Data sets NOP NEBP WEBP TWEBP SYNTH
aga 38.0 38.0 38.0 38.0 38.0
aud 136.5 136.5 79.4 83.2 131.4
car 387.6 342.8 180.4 221.2 329.8
dna 720.2 449.8 181.4 172.2 393.4
hay 59.6 52.1 29.7 30.9 47.3
krkp 91.4 90.6 60.4 66.4 67.0
mon1 96.7 96.7 66.9 77.8 94.7
mon2 446.4 434.1 1.0 1.0 403.4
mon3 60.0 17.6 17.6 17.6 17.6
nur 1133 1010.9 501 727.2 879.3
pro 37.8 33.0 19.4 17.0 32.2
soy 248.1 186.1 138.7 143.4 169.9
tic 319.6 319.6 163.9 216.1 282.7
vot 66.4 54.7 13.9 4.0 29.8
Avg 274.4 233.0 106.6 129.7 208.3

hypothesis could not be rejected.
The table contains some unexpected results. First, performing no pruning

for some of these data sets seems to be a good strategy and NOP has the
highest rank for several of the data sets. In addition, NOP has an average
error percent better than that of TWEBP and WEBP. Second, the naive
version of EBP, NEBP, performs better than WEBP and TWEBP both in
terms of rank and error percent.

Detailed information about the amount of pruning employed by the dif-
ferent algorithms is reported in table 5.5. Each row contains the average size
of the pruned trees produced for the different data sets, except the last row
containing the average tree sizes across all data sets.

There is a distinct pattern in the amount of pruning performed by the
different algorithms compared to each other for these data sets. Naturally,
NOP creates the largest trees since no pruning is employed. NEBP is similar
to NOP and performs almost no pruning, while TWEBP and WEBP perform
the most pruning of all the algorithms. This is rather surprising considering
the close algorithmic relationship between the three algorithms, yet it is
consistent with the rank and error percent of these algorithms where the
amount of pruning performed by NEBP appears to be better suited for these
data sets.

SYNTH prunes more than NOP and NEBP and less than WEBP and
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TWEBP, a strategy that is the most appropriate on average for these data
sets considering the ranks and error percents observed.

5.5 Summary

This chapter has explained how ADATE can be used to improve decision tree
learning by focusing on a specific part of it, namely pruning. The pruning
algorithm chosen for improvement was a partial implementation of EBP, and
numerous synthetic data sets with simple two-layer neural networks as their
underlying models were used to guide the synthesis.

The resulting synthesized pruning algorithm was evaluated empirically
across synthetic data sets, and it was found to perform significantly better
than the start program as well as the other pruning algorithms tested. The
same pruning algorithms were evaluated on real world data sets, where the
synthesized pruning algorithm performed the best on average, even though it
was not significantly better than any of the other algorithms. Despite that,
the improvements to decision tree learning contributed by ADATE seemed
small, especially compared to other classification algorithms.

In the next chapter, we try to achieve greater advancements by addressing
areas of the specification presented in this chapter where there are room for
improvements.



Chapter 6

Improving Decision Tree
Learning 2

Based on the results and discoveries from the execution of the first pruning
specification, we developed a second pruning specification mostly identical
to the first, but with some modifications.

This chapter first gives a description of the modifications made to the
first specification described in the previous chapter. Second, an explanation
is provided of how ADATE was executed, how the synthesized pruning al-
gorithm was selected and how the synthesized pruning algorithm performs
pruning. Lastly, the results from the empirical evaluation of the synthesized
pruning algorithm are presented.

6.1 Specification

Since the specification remains mostly the same as the first specification,
only the modifications made to the first version are described. The three
most important changes include scaling of the arguments passed to the
CalculatedDist constructor, using WEBP as the initial f function and gen-
erating synthetic data sets with a varying number of attribute values and
classes along with a more complex underlying neural network. The whole
specification is listed in appendix F.

6.1.1 User-Defined Data Types

Most of the data types remain exactly the same as in the first version ex-
cept for c tree and calculated distribution where changes were made
to the CLeaf and CalculatedDist constructors. CLeaf is simplified and

62



CHAPTER 6. IMPROVING DECISION TREE LEARNING 2 63

the class previously included in addition to the calculated distribution

is removed. This class is superfluous since it is already included in the
calculated distribution. As a result, there are fewer alternatives for
ADATE to consider, possibly speeding up program synthesis.

Two changes are made to the CalculatedDist constructor. First, an
extra argument is added holding the size of the training set, which might be
useful in synthesis. Second, all the numerical arguments of CalculatedDist
are now scaled with regard to how constants are generated in ADATE. Ap-
proximately 50% of the time is spent searching for constants in the interval
-0.5 and 0.5, while the remaining 50% is spent searching outside this interval.
Consequently, for the first specification, where the values typically would lie
well beyond this interval, most of the time was spent generating too small
constants without any practical use.

The three numerical arguments of CalculatedDist are scaled as follows:

sc =
c

2n
, sn =

n

100
, sN =

5n

N

where n is the number of instances reaching a particular node, c is the number
of these instances matching the majority class, N is the total number of
instances and sc, sn and sN are their scaled counterparts.

6.1.2 The f Function

The f function has undergone some changes, but most of the changes are
made to the auxiliary errorEstimate function. Thus for the sake of brevity,
we only present a rewritten Standard ML version of errorEstimate in figure
6.1, while the original and the rewritten f function are presented in appen-
dices F and G.

The errorEstimate function has been changed to correct the flaws of
the original f function regarding, as previously explained, the omission of
the continuity correction and the inappropriate use of the normal distribution
when the number of errors are either close to zero or the number of instances.
As a consequence of these changes, the initial f function is now regarded as an
implementation of EBP without tree grafting. Note that the errorEstimate
function only returns the amount that should be added to the error to get
the upper limit of the confidence interval, and does not return the complete
error estimate as the errorEstimate function in the first specification did.

Because of the changes to the CalculatedDist constructor, an extra
argument holding the training set size has been added to the errorEstimate
function. In addition, it unscales the scaled numbers given as input in order
to make the calculation correct.
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fun e r rorEst imate ( ( sc , sn , sN) : r e a l ∗ r e a l ∗ r e a l ) : r e a l =
l et

val n = sn ∗ 100 .0
val e = n − ( sc ∗ 2 .0 ∗ n)

in
i f e < 1 .0 then
let

val base = n ∗ ( 1 . 0 − pow(0 . 2 5 , 1 . 0 / n) )
in

i f 0 .0 < e then
base + e ∗ (

( e r rorEst imate ( ( n−1.000000001) / (2 . 0 ∗ n) , sn , sN)
) − base )

else
base

end
else

i f n < e + 0 .5 then
i f 0 .0 < n − e then n−e else 0 .0

else
let

val errorRate = ( e + 0 . 5 ) / n
val z = 0.674489751129221500

val sq = ( errorRate / n) −
( er rorRate ∗ errorRate / n) +
( z ∗ z / ( 4 . 0 ∗ n ∗ n) )

val va l1 = errorRate + ( z ∗ z ) / ( 2 . 0 ∗ n) + z ∗ ( s q r t sq )
val va l2 = (1 . 0 + ( z ∗ z ) / n)
val r = val1 / va l2

in
( ( r ∗ n) − e )

end
end

Figure 6.1: The auxiliary errorEstimate function of the initial f function
rewritten in Standard ML.
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6.1.3 Available Functions

There are one addition and three restrictions to the functions available to
ADATE during synthesis. We decided to include the = function to enable
comparison of classes, and restrict access to the split point data type by
making it abstract since there is no clear need for it in a pruning algorithm.
Furthermore, we evaluated whether to include the arithmetic ln and sqrt

functions by executing two specifications, one with ln and sqrt and one
without, in parallel for a short amount of time. Since no distinct difference
in performance was observed, we decided to discard these two functions.

6.1.4 Inputs and Output Evaluation Function

In the first specification, all the synthetic data sets had only attributes and
classes with two values, meaning all the unpruned decision trees trained had
only decision nodes with two branches. Since the trees had so similar proper-
ties, there was an increased danger of overfitting. Thus, in this specification,
the number of attribute and class values are randomly varied between two,
three and four.

The neural network corresponding to each data set is changed from a
two-layer neural network to a three-layer network containing an output, an
input and a hidden layer. Identically to the first specification, each class is
represented as an output node, and the output node with the highest value
for a given set of inputs determines the class.

However, there is no longer a one to one relationship between the input
nodes and the attributes since each attribute can have more than two values.
We encode the attribute values as binary numbers, meaning 0 as 0, 1 as 1, 2
as 10 and 3 as 11. Consequently, attributes with two values are represented
as one node, while attributes with three or four values are represented as two
nodes.

Moreover, the complexity of the network is varied by randomly selecting
the number of nodes in the hidden layer between between 5 and 11. Each
node in the hidden layer has a tanh activation function.

Similarly to the first specification the training fraction is varied between
0.2 and 0.35 in steps of 0.05 and the number of attributes removed is varied
between zero and five, while the number of attributes is now varied between
6 and 10. By using all combinations of these parameters, a total of 100 data
sets are generated and, as in the first specification, this generation procedure
is repeated multiple times to create ADATE training, validation and test
inputs.
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6.2 Execution of ADATE

The ADATE system was executed on a cluster with 28 computers composed
of a total of 42 CPU cores that are a mix of Intel Pentium D and Pentium 4.
A month or more will eventually be given to the execution of ADATE, but
we extracted the final program after approximately two weeks of execution in
order to present preliminary results of this second specification in this thesis.
Thus, the results are likely to only become better as ADATE continues to
execute until termination.

Contrary to the first specification, we did not perform any initial experi-
mentation with the number of training inputs to include before executing the
ADATE system. Instead, we decided to start with only 100 training inputs
and increase the number of inputs as needed during execution.

This experimental procedure is based on some rather intriguing details
observed during execution of the first specification about how the synthesized
programs evolved in performance relative to each other. The difference in
performance between the synthesized programs in the population is great at
the beginning of synthesis, and it is clear that valuable advancements are
made. However, this difference decreases with time to the extent that there
is almost no difference. Typically, this is a sign of overfitting in ADATE, but
the programs make similar advancements on the validation inputs as on the
training inputs, suggesting no overfitting.

A possible explanation for this decrease in performance improvement is
that it might be more difficult to make as big improvements when approach-
ing the optimal, achievable performance of pruning the initial unpruned trees.
Figure 6.2 shows a graphical representation of this evolvement where the
best program slowly approaches the optimal pruning algorithm. In this way,
higher amount of data is required later in the synthesis than in the beginning
to be able to spot improvements made to the programs.

By following the experimental procedure suggested above, it is possible
to increase the execution speed and at the same time enable ADATE to
distinguish between the programs synthesized.

6.2.1 Selecting the Pruning Algorithm

Similarly to the first specification, we used a much bigger validation set to
select the final pruning algorithm, but because of the increased size of the
synthetic data sets, we were forced to use 5000 instances instead of 15000.
Figure 6.3 presents a rewritten version of the selected f function in Standard
ML, while the original is presented in appendix H.
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Figure 6.2: A graphical representation of how the performance of the best
program seems to evolve in relation to the optimal pruning algorithm.

The selected f function employs the same bottom-up tree traversal al-
gorithm as the start program and uses a modified version of the auxiliary
function pruneTreeList to prune the children as well as to calculate their
estimates. At first the modifications to the pruneTreeList might seem great
since the current tree is made the last member of the c tree list returned.
However, this has no impact on classification since the last branch does not
correspond to an attribute value and will never be traversed. Thus, the
pruneTreeList is exactly the same as the original except it adds 0.235 to
the sum of the estimates of the children.

The errorEstimate function included in the original f function is re-
moved, and it calculates the estimates somewhat differently depending on
whether the nodes are a list of children or a single decision node. Note, the
values calculated are estimates of the accuracy and not the error, explain-
ing why pruning is performed if the children have a lower estimate than its
parent node.

Calculation of the estimate of a set of children involves sN at the current
node and childError, the sum of the estimates of the leaf nodes located in
the subtree rooted at each child. The estimate of a leaf node is determined by
sn and sc, where sn controls the minimum and maximum value returned such
that the interval increases as sn increases, while sc determines the position
of the final value in this interval so that a high sc results in a low value
and the other way around. Thus, accurate leaves covering many instances
receive low estimates contributing to a low childError which results in a
high overall estimate of the children since the childError is subtracted.

Calculation of the estimate of an internal decision node involves only sn

and sc. The value of val1 is calculated similarly to the estimate of a leaf
node except other constants are used and sc is not subtracted from the final
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fun f ( curTree as CLeaf ( d i s t ) ) =
l et

val Calcu la tedDis t ( , sc , sn , ) = d i s t
val va l0 = sn ∗ 67.92176711838479

in
( ( ( va l0 − ( sc ∗ 2.8584295366524395 ∗ va l0 ) ) + sc ) , curTree )

end
| f ( curTree as CDN( sp l i tPo in t , d i s t , c h i l d r en ) ) =
l et

fun pruneTreeList CTreeListNi l = (0 .2350543345568945 ,
CTreeListCons ( curTree , CTreeListNi l ) )

| pruneTreeList ( CTreeListCons ( x , xs ) ) =
l et

val ( prunedError , prunedTree ) = f ( x )
val ( prunedErrors , prunedTrees ) = pruneTreeList ( xs )

in
( prunedError + prunedErrors , CTreeListCons ( prunedTree ,

prunedTrees ) )
end

val ( ch i ldError , prunedChildren ) = pruneTreeList ( ch i l d r en )
val Calcu la tedDis t ( , sc , sn , sN) = d i s t

val va l3 = ( sn ∗ 59.59799248750001)

val va l1 = ( va l3 − ( ( sc ∗ 2.911831626001407) ∗ va l3 ) )
val e s t imate = sn − va l1

val va l2 = ( tanh ( tanh (1.052447543004225 + ch i l dEr ro r ) − sN) +
sN)

val ch i ldEst imate = ( va l2 − ch i l dEr ro r )
in

i f ch i ldEst imate < e s t imate then
( f ( CLeaf d i s t ) )

else
( ch i ldError , CDN( sp l i tPo in t , d i s t , prunedChildren ) )

end

Figure 6.3: The f function of the synthesized pruning algorithm rewritten in
Standard ML for clarity and compactness.
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value. Since val1 is subtracted from sn, it is clear that the highest estimate
is achieved by the decision node that covers the most instances belonging to
the same class.

Still, it is hard to determine by only reviewing the source code when
pruning is performed and whether this strategy is better than the original.
However, this may be answered empirically by the results presented in the
following section.

6.3 Results and Analysis

The same empirical study performed for the first decision tree pruning spec-
ification is performed for the second specification as well. As a result, the
synthesized pruning algorithm, SYNTH, is compared across synthetic and
real world data sets to three other pruning algorithms, namely no prun-
ing (NOP), the initial f function implementing EBP without tree grafting
(WEBP), and EBP without tree grafting utilizing cross-validation to tune
the confidence level (TWEBP). In addition, SYNTH is compared with 31
classification algorithms from WEKA on synthetic data sets.

In order to statistically evaluate the results, the Friedman and Holm post
hoc test are utilized to determine whether the algorithms are truly different
at 0.05 significance and specifically which of the algorithms that are truly
different from SYNTH.

6.3.1 Synthetic Data

The synthetic data sets for testing are generated using the same procedure
previously described for generating ADATE training and validation inputs.
When comparing SYNTH with other pruning algorithms, 60000 data sets
are generated where 12000 data sets are generated for each specific number
of attributes to remove. Due to the large computational requirements of
evaluating the different algorithms, only 1000 data sets are utilized when
comparing SYNTH with other classification algorithms where 200 data sets
are created for each number of attributes removed.

Pruning Algorithms

Table 6.1 shows the average ranks of the pruning algorithms on 60000 syn-
thetic data sets. The last row contains the average rank of the pruning
algorithms for all the data sets, while the other rows contain the average
rank of the pruning algorithms for the data sets where a specific number
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Table 6.1: Average ranks of each pruning algorithm on synthetic data.

#Removed Attribs #Data sets NOP WEBP TWEBP SYNTH
0 12000 3.293- 2.585- 2.148- 1.974
1 12000 3.577- 2.251- 2.138- 2.034
2 12000 3.707- 2.087 2.105 2.101
3 12000 3.615- 2.100+ 2.137 2.148
4 12000 3.091- 2.303 2.284+ 2.322

Avg 60000 3.457- 2.265- 2.162- 2.116

of attributes are removed. A + is included if the algorithm is significantly
better than SYNTH and a - is included if it is significantly worse.

SYNTH performs significantly better on average than the other pruning
algorithms with an average rank of 2.116. This rank is remarkably higher
than that of NOP, and SYNTH outperforms NOP for each of the data sets
where a specific number of attributes are removed.

On the other hand, the difference in average rank is not that great com-
pared to WEBP and TWEBP. SYNTH only outperforms them when zero
and one attribute are removed, while they outperform SYNTH when three
and four attributes are removed. Although the difference is not that great, it
shows that ADATE has been able to significantly improve the initial pruning
algorithm, WEBP.

Other Classification Algorithms

Table 6.2 contains the average ranks of the 31 classification and the 4 pruning
algorithms on 1000 synthetic data sets. Each column contains the average
rank of the algorithms for the data sets where a specific number of attributes
are removed, except for the last column containing the average ranks across
all the data sets. A + or - is included if the algorithm is either significantly
better or worse than SYNTH according to the Holm post hoc test.

SYNTH performs poorly on these synthetic data sets compared to the
other classification algorithms with only an average rank of 19.0, which is
remarkably lower than the average rank of the best algorithm, Logistic. In
addition, 19 of the classification algorithms are better than SYNTH and 17
of these are significantly better.

Despite that, 14 of the algorithms outperforming SYNTH are related to
mathematical or bayesian models, while the remaining three algorithms con-
sist of the nearest neighbour algorithm, K*, and the two ensemble algorithms,
bagging and AdaBoost.M1, making use of the traditional decision learner,



CHAPTER 6. IMPROVING DECISION TREE LEARNING 2 71

Table 6.2: Average ranks of 4 pruning algorithms and 31 other classification
algorithms on synthetic data.

Methods 0 1 2 3 4 Avg
Logistic 4.1+ 4.3+ 4.8+ 6.8+ 8.5+ 5.7+
LMT 3.8+ 4.4+ 5.9+ 6.8+ 9.1+ 6.0+
SLogistic 4.6+ 5.1+ 5.7+ 7.1+ 9.2+ 6.4+
M5P 7.3+ 6.5+ 6.0+ 7.0+ 9.7+ 7.3+
M5Rules 7.7+ 6.9+ 6.3+ 7.4+ 9.9+ 7.6+
SMO 4.8+ 5.5+ 6.7+ 11.1+ 15.3 8.7+
NB 11.7+ 9.3+ 8.4+ 9.5+ 10.7+ 9.9+
LinReg 10.2+ 10.1+ 9.5+ 10.5+ 12.2+ 10.5+
NBTree 11.2+ 10.8+ 10.2+ 10.4+ 10.7+ 10.7+
LWL 12.2+ 10.3+ 10.1+ 10.8+ 11.5+ 11.0+
ADTree 13.3+ 11.8+ 10.4+ 10.8+ 11.3+ 11.5+
RBFN 12.6+ 11.7+ 12.8+ 15.2 16.1 13.7+
MP 3.3+ 11.8+ 17.1 19.7 20.0- 14.4+
Bagging 16.9+ 16.3+ 15.5+ 15.1 15.7 15.9+
VP 14.3+ 14.7+ 15.9+ 16.4 19.2 16.1+
K* 17.1+ 16.9+ 17.6 14.8 14.2 16.1+
AdaBoost 13.3+ 17.1+ 19.3 18.9 17.0 17.1+
PART 19.3 19.8 19.4 18.6 17.2 18.8
J48 22.1 20.9 18.4 17.5 16.1 19.0
SYNTH 21.6 21.5 19.2 17.3 17.0 19.3
TWEBP 22.1 21.5 18.6 17.7 17.5 19.5
WEBP 22.9 21.8 18.8 17.5 16.5 19.5
RF 15.4+ 19.4 25.1- 25.5- 20.7- 21.2-
DT 25.2- 23.4 20.5 18.3 18.4 21.2-
JRip 24.4- 22.4 20.9 19.4 20.0- 21.4-
IBk 24.2 21.6 24.1- 25.0- 20.4- 23.1-
REPTree 27.7- 25.3- 23.0- 20.5- 19.6 23.2-
NOP 25.0- 27.1- 27.8- 25.7- 20.7- 25.2-
Ridor 28.1- 27.2- 26.0- 25.1- 24.2- 26.1-
NNge 20.6 24.3 28.0- 29.8- 31.1- 26.8-
OneR 32.1- 30.9- 29.5- 28.4- 26.6- 29.5-
IB1 30.0- 30.6- 30.7- 30.8- 31.3- 30.7-
DS 32.7- 31.7- 30.4- 29.3- 28.2- 30.5-
ZeroR 33.8- 32.8- 32.9- 31.9- 30.7- 32.4-
HP 34.6- 34.2- 34.2- 33.6- 33.4- 34.0-
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Table 6.3: Ranks of each pruning algorithm on real world data sets. Obvi-
ously, smaller numbers are better. The error percents of the algorithms are
shown in parenthesis.

Data sets NOP WEBP TWEBP SYNTH
aga 2.5(0) 2.5(0) 2.5(0) 2.5(0)
aud 1(24.5) 3(28.4) 4(28.9) 2(27.6)
car 1(5.6) 4(6.3) 2(5.7) 3(6.1)
dna 4(8.4) 1.5(6.1) 1.5(6.1) 3(6.4)
hay 3(28.8) 1.5(27.5) 1.5(27.5) 4(30.0)
krkp 1(0.3) 3(0.5) 2(0.4) 4(0.6)
mon1 2(2.2) 4(2.9) 1(2.0) 3(2.7)
mon2 1(29.3) 2.5(34.3) 2.5(34.3) 4(39.4)
mon3 4(2.7) 2(1.1) 2(1.1) 2(1.1)
nur 1(1.2) 4(3.2) 2(2.4) 3(2.5)
pro 1(25.2) 4(30.3) 2(26.4) 3(27.3)
soy 2(7.9) 1(7.8) 3(8.1) 4(9.8)
tic 4(14.9) 3(14.8) 2(13.9) 1(13.6)
vot 4(6.7) 2(4.8) 1(4.4) 3(5.3)
Avg 2.250(11.3) 2.714(12.0) 2.071(11.5) 2.964(12.3)

J4.8. This shows that the inductive bias of traditional decision tree learners
is not suitable for these data sets, and ADATE appears to have had little
impact on improving the inductive bias of decision tree learning.

This is further supported by the fact that SYNTH is only slightly better
than WEBP and TWEBP.

6.3.2 Real World Data

The real world data sets are the same used in the empirical evaluation of the
first synthesized pruning algorithm in section 5.4.2, so please refer to this
section for more information about the data sets.

Table 6.3 presents for each data set the rank and error percent of the
different pruning algorithms, where the last row contains the average rank
and error percent of the algorithms across all the data sets. The error percent
is calculated using 10 fold cross-validation and is shown in parenthesis.

SYNTH is the worst pruning algorithm with an average rank of nearly
three. WEBP and SYNTH have similar ranks, while the difference between
SYNTH and the other two algorithms is much bigger. Still, the differences
between the algorithms are too small to reject the null hypothesis of these
algorithms being different.
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Table 6.4: Average number of nodes in the pruned trees produced by the
pruning algorithms on real world data sets.

Data sets NOP WEBP TWEBP SYNTH CLEAN
aga 38.0 38.0 38.0 139.0 38.0
aud 136.5 79.4 83.2 690.7 88.5
car 387.6 180.4 221.2 2061.9 218.4
dna 720.2 181.4 172.2 3418.4 222.6
hay 59.6 29.7 30.9 182.5 35.7
krkp 91.4 60.4 66.4 756.6 63.8
mon1 96.7 66.9 77.8 410.3 76.6
mon2 446.4 1.0 1.0 2059.8 191.3
mon3 60.0 17.6 17.6 133.1 17.6
nur 1133.0 501.0 727.2 7346.1 722.0
pro 37.8 19.4 17.0 95.2 21.0
soy 248.1 138.7 143.4 1402.2 131.3
tic 319.6 163.9 216.1 1656.7 180.1
vot 66.4 13.9 4.0 194.1 21.4
Avg 274.4 106.6 129.7 1467.6 144.9

Similarly to the average rank, SYNTH has the highest error percent,
WEBP has a somewhat lower error percent, while TWEBP and NOP have
distinctively lower error percents.

The amount of pruning applied by the different algorithms is shown in
table 6.4. Each row contains the average size of the trees pruned by the
algorithms for the different data sets. Since SYNTH adds extra branches
that are never traversed, an extra column CLEAN is included that contains
the size of the trees produced by SYNTH after the extra branches have been
removed. We evaluate SYNTH in terms of this column instead of the original
because it better represents the amount of pruning applied.

SYNTH performs more pruning on average than NOP and less pruning
than TWEBP and WEBP. However, SYNTH does not systematically pro-
duce bigger trees than TWEBP, and it produces smaller trees for several data
sets. In this way, SYNTH lies somewhere in between NOP and WEBP in
terms of the degree of pruning, where it seems to be positioned more towards
WEBP considering it occasionally performs more pruning than TWEBP.

This provides a possible explanation for the poor performance of SYNTH
for these data sets because the unpruned trees appear to need either a sig-
nificant amount of pruning or almost no pruning. Accordingly, SYNTH per-
forms too much pruning for the data sets where little pruning is needed,
while it performs too little pruning for the data sets where extensive pruning
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is needed.

6.4 Summary

This chapter has explained the second pruning specification, which improves
upon the first pruning specification in some areas. The most notable changes
made to the first specification were scaling of the arguments given to the
CalculatedDist constructor, using EBP without tree grafting as initial f
function and generating more complex data sets with a varying number of
attribute and class values.

The synthesized pruning algorithm performed significantly better than
the other pruning algorithms across 60000 synthetic data sets, which showed
that ADATE was able to improve the initial f function. Still, the improve-
ments seemed small and SYNTH was severely outperformed by other clas-
sification algorithms on 1000 synthetic data sets. In addition, it performed
poorly on real world data sets, although the results were not statistically
significant.

These results are similar to the results of the pruning algorithm syn-
thesized for the first specification. Both algorithms performed significantly
better than the other pruning algorithms on synthetic data sets and were
outperformed by other classification algorithms on the same type of data
sets.

Furthermore, none of the synthesized pruning algorithms could be sepa-
rated statistically from the other pruning algorithms on real world data sets.
Despite that, the first pruning algorithm performed the best on these data
sets, while the second synthesized pruning algorithm performed the worst.



Chapter 7

Further Work

Solving classification problems through ADATE has been thoroughly inves-
tigated in this thesis, yet this investigation is far from complete and there
are many more areas that should be further explored. We highlight, in this
chapter, the areas that seem the most interesting to investigate for both
synthesizing classifiers and improving classification algorithms.

7.1 Synthesizing Classifiers

Little of the expressive power and the flexibility provided by ADATE are
used in the synthesis of classifiers in this thesis. As mentioned previously,
this was an intentional choice made in order to objectively compare ADATE
and the other classification algorithms by avoiding specific customization of
the algorithms to the data sets.

In addition, it is hard, if not impossible, to use an expressive representa-
tion when the original representation of the data set is more restrictive. This
is the case for the data sets used in this paper and for most of the other data
sets at UCI machine learning repository, where the attribute-value represen-
tation is used.

Nonetheless, it would have been interesting to see what effect any utiliza-
tion of the more advanced features of ADATE would have on the classifiers
synthesized. In the next sections, we highlight one of these features, algebraic
data types, and particularly some of its advantages compared to the normal
attribute-value representation used in classification. In addition, we describe
two related fields of traditional classification, multiple-instance problems and
multiple-part problems, where the advanced feature set of ADATE might be
better suited.
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<meals>
<p i zza c l a s s=” s a t i s f a c t o r y ”>

<topping>
<cheese>

<s o r t>Mozzare l la</ s o r t>
</ cheese>

</ topping>
</ p i zza>
<p i zza c l a s s=” un s a t i s f a c t o r y ”>

<topping>
<Tomatoes/>

</ topping>
</ p i zza>
<tap i r soup c l a s s=” s a t i s f a c t o r y ”>

<sp i c ed />
</ tap i r soup>

</meals>

Figure 7.1: An example of structured XML data that cannot be completely
represented using the attribute-value encoding. This data is partially taken
from [52].

7.1.1 Algebraic Data Types

ADATE-ML supports algebraic data types where a data type consists of one
or more of constructors with zero or more arguments of other data types. In
this way, it is possible to construct data structures such as lists and trees.
However, in the specifications for synthesis of classifiers, the algebraic data
types are only used to model the attribute-value representation used in orig-
inal the data sets so that all the constructors take either no arguments or a
single real.

The main problem with the attribute-value representation is that it can-
not naturally represent structured data. For instance, it is impossible to
completely model the XML data in figure 7.1 using this representation. Still,
there are workarounds; Unfortunately, these workarounds have negative ef-
fects on the representation such as increasing the number of attribute values,
introducing attributes only applicable for instances with specific attribute
values or introducing redundancy in the attributes so that the same infor-
mation is represented in different ways [52].

Algebraic data types, on the other hand, are better suited for representing
structured data [53, 52]. For instance, figure 7.2 shows how easily the struc-
tured data from figure 7.1 can be represented in ADATE-ML using algebraic
data types.
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datatype c h e e s e s o r t = Mozzare l la | Gorgonzola
datatype topping = Cheese of c h e e s e s o r t | Tomatoes | Mushrooms
datatype meal = Pizza of topping | TapirSoup of bool
datatype c l a s s = Sa t i s f a c t o r y | Unsa t i s f a c t o ry

val ( inputs , outputs ) = L i s tPa i r . unzip [
( Pizza ( Cheese Mozzare l la ) , S a t i s f a c t o r y ) ,
( Pizza Tomatoes , Unsa t i s f a c t o ry ) ,
( TapirSoup true , S a t i s f a c t o r y ) ]

Figure 7.2: The data from figure 7.1 represented in ADATE-ML.

A particular attractive feature of algebraic data types is that it allows in-
cremental exposure of attributes. For example, cheese sort from figure 7.2
becomes only available after inspecting topping and meal through pattern
matching. In this way, attributes can be inspected as deeply as necessary,
and the attributes are scoped similarly to how ADATE scopes functions,
reducing the number of attributes to consider.

7.1.2 Multiple-instance and Multiple-part Problems

Multiple-instance problems (MIP) [54] and multiple-part problems (MPP)
[55, 56] are related to traditional classification problems in that the task is
to predict the class of an object. However, the object has different properties
compared to traditional classification. Instead of being composed of a set of
attributes, it is composed of a set of instances.

An example of a multiple-instance problem is the musk problem intro-
duced in [54] where the task is to determine whether a molecule is musky,
that is whether it activates the musk molecule. A molecule can have alterna-
tive shapes or conformations with different activation properties. In this way,
the object is the molecule and the different conformations are the instances.

If at least one of these conformations are musky, the molecule is considered
musky. However, the information available for each molecule is incomplete.
It is only known whether a molecule is musky, meaning it is unknown which
of the specific conformations responsible for the activation.

The instances have different representations in MIP and MPP. In MIP, the
instances are alternative representations of the same object, while in MPP,
these are different parts of the same object. Considering the musk problem,
this would have been a multiple-part problem if each instance corresponded
to a separate part of the same molecule, for example an atom.

MIP and MPP do not fit traditional classification algorithms well since
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they cannot represent multiple instances. Still, several extensions have been
proposed to existing classification algorithms to allow them to solve such
problems, yielding competitive results compared to other MIP and MPP
methods [56, 57]. Thus, ADATE might be applied with success to these types
of problems as well considering the expressive nature and the competitive
results with state-of-the-art classification algorithms.

7.2 Improving Classification Algorithms

7.2.1 Other Classification Algorithms

The next natural step in improving classification algorithms is to try to im-
prove some of the other algorithms besides traditional decision tree learning.
These could be improved as demonstrated in this thesis by implementing
the algorithm in ADATE-ML and targeting different parts of it in synthesis.
Naturally, it would be most interesting to attempt to improve state-of-the-art
classification algorithms like boosting and SVMs.

For instance, a boosting algorithm like AdaBoost could be improved,
either by letting ADATE synthesize the best base classifier to use with Ad-
aBoost for a particular domain, or improving the algorithm as a whole. One
problem with AdaBoost is that it can be computationally expensive to exe-
cute the base classification algorithm numerous times. Thus, this base algo-
rithm should be fast to execute.

7.2.2 Other Performance Metrics

In this thesis, we considered only one performance metric, the accuracy,
when trying to improve decision tree pruning through ADATE. Accuracy is
the most popular performance metric, especially for comparing algorithms
with each other, and thus it was a natural choice. Nevertheless, there are
situations where other performance metrics are better suited than accuracy.

These other performance metrics are often related to predicting the prob-
ability of an instance belonging to the different classes instead of predicting
a single class. Most classification algorithms can be adapted to return prob-
abilities or more appropriately put return a set of values representing the
certainty of each possible prediction. For instance, a decision tree can return
probabilities by returning a distribution with the fraction of the instances
reaching the leaf for the different classes.

Accurate probability metrics are needed in situations where predictions
made by the classifier are processed in some way. For instance, the proba-
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bility of each possible prediction might be used by a human expert to decide
whether a more thorough and expensive investigation is needed before making
the final prediction. In these situations, the squared error and cross-entropy
metrics are better suited than accuracy.

In other areas, accurate probabilities are not specifically needed since
the probability values are only used to order the instances. For example, in
marketing, when sending out direct mail, only a specific portion of the overall
population is selected and the goal is to select the portion that maximizes
the reply rate. A classifier can be used to find this portion by ordering the
instances and selecting the instances (persons) that most likely will reply. For
this task, the lift metric is the most appropriate to find the best classifier,
while the metrics, break-even point and area under the ROC curve, are better
suited in other areas such as information retrieval and medicine. For a more
thorough explanation of these metrics please refer [58, 6].

Unfortunately, a classification algorithm that performs well in terms of
one metric does not necessarily perform well in terms of another metric.
Thus, it would be interesting to investigate whether ADATE can improve
classification algorithms in terms of these other metrics. Since this is almost
exactly the same problem as improving the accuracy of classification algo-
rithms, only a modification to the output evaluation function of the pruning
specifications presented in appendix D and F should be necessary to enable
improvement of some other metric than accuracy.

Nevertheless, a comparison of 10 metrics, including the metrics mentioned
here, conducted by Caruana and Niculescu-Mizil shows that some metrics are
highly correlated [58]. Of the metrics compared, squared error and SAR, a
specially designed general purpose metric, were found to select the best classi-
fier on average for the different metrics. Hence, it might be more appropriate
to use one of these metrics to improve a classification algorithm on average
across all metrics.

Naturally, classifiers could be synthesized in terms of these other metrics
as well. ADATE might perform better for these metrics compared to other
classification algorithms since ADATE can produce classifiers specifically de-
signed for each metric, while most classification algorithms are directed either
at accuracy or squared error.



Chapter 8

Conclusion

This chapter presents our concluding remarks for the two areas of classifica-
tion explored with the ADATE system in this thesis.

8.1 Synthesizing Classifiers

We have shown how ADATE can be used to induce classifiers for a set clas-
sification problems just as easily as other classification algorithms by auto-
matically generating specifications based on the same files utilized by the
popular C4.5 decision tree system. In this way, no programming knowledge
is needed at all, only knowledge of how to execute programs on the command
line.

The execution of these specifications resulted in accurate classifiers and
ADATE proved to be competitive with state-of-the-art classification algo-
rithms. It was found, along with Logical Model Trees, to produce on average
the most accurate classifiers, although it was only significantly better than 8
of the 32 classification algorithms executed.

Nevertheless, these results were good considering the severe bugs in the
synthesis algorithm of the version of ADATE utilized for inducing classifiers,
demonstrating the durability and the strength of the systematic population-
based search employed by ADATE. However, a new empirical study should
be conducted to investigate how ADATE performs without bugs and how
much it really affected the ability to find accurate classifiers. For this study,
a larger number of data sets should probably be used in order to better
distinguish the different algorithms from each other.

Even though we have shown that ADATE can be competitive in terms of
accuracy, its computational requirements are large and order of magnitudes
higher than the computational requirements of any of the other classification
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algorithms used in this thesis. Thus, it is not justifiable in most cases to
execute ADATE since simpler methods can be applied with the same result.

Still, there might be problems that are too complex to be sufficiently
solved with traditional classification algorithms where the infinite and sys-
tematic search utilized by ADATE and the ability to fully represent the
problem might be better suited. This seems to be a possible sweet spot for
ADATE, and it is probably in this area ADATE should be further explored
in terms of synthesis of classifiers, provided that the bugs did not have severe
impact on the performance of the synthesized classifiers.

8.2 Improving Classification Algorithms

Improving classification algorithms seems to be a problem that is better
suited for ADATE than inducing classifiers since ADATE has been specif-
ically designed for automatic synthesis of algorithms and there is a direct
need for algebraic data types, auxiliary functions and recursion.

In this thesis, we have specifically described how one particular type of
classification algorithm, namely decision tree learning, can be improved us-
ing ADATE by implementing the algorithm in ADATE-ML and targeting
different parts of it. This methodology is certainly not restricted to decision
tree learning and can be applied to virtually any classification algorithm that
is sufficiently light-weight to repeatedly be executed during evaluation.

We targeted decision tree pruning, a specific part of decision tree learning,
and showed on two occasions that ADATE was able to improve the pruning
algorithm chosen as the start program with statistical significance for a fairly
general domain. Both of the synthesized pruning algorithms outperformed
the other pruning algorithms when evaluated on synthetic data sets selected
according to a probability distribution that attempts to model the effects of
not having enough information available in real world data sets.

In addition, one of the two synthesized pruning algorithms performed bet-
ter than the other pruning algorithms across real world data sets, although
the differences between the algorithms were not statistically significant ac-
cording to the Friedman test.

Still, the improvements to decision tree learning contributed by these
pruning algorithms seemed rather small considering their bad performance
on synthetic data sets compared to numerous other classification algorithms.
The first pruning algorithm was outperformed by 15 algorithms and the sec-
ond pruning algorithm was outperformed by 17. However, only one and two
of these algorithms were traditional decision tree learners or used traditional
decision tree learners in some way, suggesting that the inductive bias of tradi-



CHAPTER 8. CONCLUSION 82

tional decision tree learners is not suited for these data sets and that ADATE
is not able to extensively modify the inductive bias.

Even though the improvements to decision tree learning seemed rather
small, we have at least shown that ADATE made some improvements, both
in general and for a particular domain, to the initial pruning algorithm,
and that it might be possible to automatically improve other classification
algorithms as well. In addition, advances in the ADATE system and in
computational power of computers might in the future lead to improvements
of state-of-the-art machine learning algorithms like boosting and SVM.
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ABSTRACT 

This paper presents classification results for infrasonic 
events using practically all well-known machine learning 
algorithms together with wavelet transforms for pre-
processing.  We show that there are great differences 
between different groups of classification algorithms and 
that nearest neighbor classifiers are superior to all others 
for accurate classification of infrasonic events. 
 
Keywords: Classification, Machine Learning, Pattern 
Recognition, Wavelets 

1.  INTRODUCTION 

Infrasound is low frequency sound, typically of a 
frequency of a few Hertz to 20 Hertz. Due to its inherent 
properties, infrasound can travel distances of many 
hundreds of kilometers. Infrasound signals can result 
from nuclear explosions, volcanic eruptions, mountain 
associated waves, auroral waves, earthquakes, meteors, 
avalanches, severe weather, quarry blasting, 
air/spacecraft, gravity waves, microbaroms, opening and 
closing of doors, trains and helicopters to name but a few. 
An infrasound monitoring system operating locally like 
the Swedish-Finnish Infrasound Network1 or worldwide 
like CTBTO2 must be capable of detecting and verifying 
infrasonic signals of interest and discriminating them 
from other unwanted infrasonic signals. Characterizing, 
discriminating and classifying infrasonic events therefore 
are tasks with possibly far reaching applications in very 
different disciplines.  
 
An important element for successful classification of 
infrasound data is the pre-processing techniques used to 
form a set of feature vectors that can be used to train and 
test the classifiers. In this work we use continuous 
wavelet transforms to pre-process infrasound data. 
Wavelet transformations have proven to be a valuable 
tool for signal characterization [1,2]. The wavelet 
transform methods developed over the years at IRF Umeå 
[3, 4] are used in this paper.  

                                                           
1 http://www.umea.irf.se/maps/ 
2 http://www.ctbto.org/ 

 
Machine learning provides the technical basis to extract 
implicit, previously unknown, and potentially useful 
information from infrasound data. The idea is to build 
computer programs that sift through infrasound datasets 
automatically, seeking regularities or patterns. Strong 
patterns, if found, will likely generalize to make accurate 
classifications on new data. We use a variety of machine 
learning methods, including neural nets, support vector 
machines, decision trees, association rules, linear models, 
Bayes nets and others. 
 
The advantages of neural network based approaches for 
classifying infrasonic events have been recognized for a 
while [5, 6]. Neural networks are considered to be 
powerful classification tools because of their non-linear 
properties and the fact that they make no explicit 
assumptions about the distribution of the data. We 
experimented with several neural network classifiers, 
including back-propagation classifiers, minimum least 
square linear classifiers, normal densities based quadratic 
classifiers, automatic neural network classifiers and 
random neural network classifiers. Comparing their 
performance, we reached the conclusion that neural 
network classifiers by back-propagation work the best 
among neural net techniques in our case, but are clearly 
inferior to many other machine learning methods. 

2.  FEATURE SELECTION 

Wavelet transforms methods are used to pre-process 
infrasound data. The data pre-processing steps to extract 
feature vectors are as follows. 
 
1.For a time series of N values a Morlet wavelet 
transform is performed with 128 dilations. Thus, three 
matrices, A, R and I, are obtained. The matrix A is a 
matrix of magnitudes of wavelet coefficients, wij: 
 

128,...1   ,...1   |}{| === jNiwA ij            (1) 

 
R and I contain the real and imaginary parts of wij. 
 
2.A kind of band-pass filtering of wavelet coefficient 
magnitudes is performed. The entire range of coefficient 
magnitudes, 0 to max (wmax), is divided into 20 intervals 



such that the k-th interval is limited by: 
 

20,...1 ;  *  and   * 20max20
)1(

max =− kww kk       (2) 
 
For each k the coefficients outside the range defined by 
Eq. (2) are identified and zeroed in matrices R and I, 
creating two new matrices Rk and Ik. The inverse wavelet 
transform is performed using Rk and Ik and a new version 
of the original time series, yk(ti) is created. Thus, the time 
series yk(ti) is what the signal would look like if only a 
narrow range of spectral densities would be present in the 
signal. 
 
3.The operation is repeated 20 times over the range of 
coefficient magnitudes. A new real-valued matrix Z, 
consisting of 20 rows and N columns is created. Each 
row corresponds to a time series, yk(ti).  
 
4.Each row of the matrix Z is wavelet transformed as in 
step 1, resulting in 20 matrices. Then these matrices are 
time-averaged (average along rows) leading to 20 arrays 
with 128 elements. A new matrix Y is constructed with 
the 20 arrays as rows. This matrix Y is what we call Time 
Scale Spectrum (TSS) of the time series. 
 
A 3-D plot of the matrix Y may be constructed, showing 
the time scale (1/frequency) of the signal on the x-axis, 
the wavelet coefficient magnitude of the original signal, 
in percent of its max value, on the y-axis and the wavelet 
coefficient magnitude (power spectral density) of the 
decomposed components as the colour scale.  
 
For the infrasound signals the TSS may be useful to 
resolve different frequency components. This feature 
extraction process is invariant with respect to record 
length, sampling frequency, signal amplitude and time 
sequence length. Figure 1 shows an infrasound signal 
train with 212 = 4096 components, representing 227.55 
seconds sampled at 18 Hz and its TSS. 

 
Fig. 1. The infrasound signal from a meteorite and its 

TSS 

3.  CLASSIFIERS 

In this section, we first describe classical neural nets 
trained with back-propagation and then machine learning 
algorithms in WEKA. 
 
Back-propagation neural nets (BPNNs) typify supervised 
learning, where the task is to learn to map input vectors to 
desired output vectors. The back-propagation learning 
algorithm modifies feed-forward connections between the 
input and the hidden units, and the hidden and outputs 

units, so that when an input vector is presented to the 
input layer, the output layer’s response should be the 
desired output vector. During training, the error caused 
by the difference between the desired output vector and 
the output layer’s response to an input vector propagates 
back through connections between layers and adjusts 
appropriate connection weights so as to minimize the 
error [7].  
 
WEKA [8] contains practically all common machine 
learning algorithms except neural nets.  However, not all 
of those algorithms have support for both numerical 
features and nominal classes. In addition, we experienced 
problems with four of the algorithms, making it 
impossible to use them. All in all, we ended up running 
22 different algorithms with their default parameters if 
nothing else is stated. 
 
These algorithms are grouped into five groups in WEKA 
according to what models they create. The first group, 
Bayes, includes algorithms where learning results in 
Bayesian models. NaiveBayes is an implementation of 
the standard naïve Bayes algorithm, where a normal 
distribution is used for numerical features. BayesNet 
creates a Bayesian Network with the ability to represent 
the same model as NaiveBayes or other more complex 
models where the independence between features is not 
assumed.  
 
The second group, Lazy, is comprised of algorithms that 
delay construction of classifiers until classification time. 
IB1 is a nearest-neighbor algorithm classifying an 
instance according to the nearest neighbor identified by 
the Euclidean distance as explained in [9]. IBK is similar 
to IB1 except that the k nearest neighbors are used 
instead of only one. We determined the appropriate 
number of neighbors using leave-one-out cross-
validation. Another algorithm is LWL (Locally weighted 
learning), which differs from the other two algorithms 
since it only uses a nearest-neighbor algorithm to weight 
the instances in the training set before applying another 
classification algorithm to them. We chose naïve Bayes 
because it is recommended for classification problems by 
the creators of WEKA. 
 
The third group, Rules, contains methods that create 
classification rules. OneR is the simplest of all the rule 
inducers and learns a single rule using only a single 
feature. The other four algorithms are more complex 
since they create several rules. NNge is a nearest-
neighbor algorithm which learns rules based on the hyper 
rectangles it divides the instance space into [10]. JRip is 
an implementation Cohen’s RIPPER [11]. RIPPER 
creates first a default rule and then recursively develops 
exceptions to it. Part constructs rules based on partial 
decision trees. 
  
The fourth group, Functions, contains algorithms 
representing their learnt models as mathematical 
formulas.. SMO is a sequential optimization algorithm 
for building Support Vector Machines (SVMs) [12]. We 
used a polynomial kernel which is the default in WEKA. 
RBFNetwork is an implementation of radial basis 
functions, and SimpleLogistic constructs linear logistic 
regression models. 
 



The fifth group, Trees, includes algorithms that create 
trees as models. Four of the six tree inducers create trees 
with a single class at the leaves. RandomTree learns a 
multi-level tree constructed by randomly choosing the 
splitting criterion. RandomForest is an implementation of 
Breiman’s random forest [13], where bagging and 
random trees are combined. J48 is an implementation of 
the popular C4.5 [14]. REPTree is similar to C4.5 since it 
finds the splitting criteria based on information gain, but 
it uses reduced-error-pruning to prune the tree instead of 
pessimistic training error. 
 
The last two algorithms have models in the leaves instead 
of a specific class. NBTree builds a tree with naïve Bayes 
classifiers at the leaves, where reduced-error-pruning 
controls the depth of the tree. LMT creates a tree with 
linear logistic regression models at the leaves. 
 
The last group, Miscellaneous, contains algorithms that 
do not fit into any of the other groups. HyperPipes finds 
ranges (max and min values for numerical features) for 
each feature and class pair. An instance is classified as 
the class with the most “hits” into its ranges. VFI, on the 
other hand, finds intervals for each feature, and attributes 
each class according to number of instances with the 
class in the training set for the specific interval. Voting is 
used to select the final class for an instance. Both of these 
algorithms are simple compared to the other algorithms 
and extremely fast. 

4.  EXPERIMENTAL RESULTS 

The feature vectors, TSS, were extracted from time-
domain event signals resulting in two dimensional 
20x128 matrices. These matrices were converted to 2560-
element one dimensional feature vectors. Figure 2 shows 
two sets of feature vectors of the two different types of 
events. 

 

 
Fig. 2. Two feature vectors 

Experiment 1: One Infrasound Category 

In this experiment, we made a total of 200 infrasound 
measurements of 10 different doors being opened and 
closed.  We chose to use 100 of these examples for 
training and the remaining 100 for testing. 
 
The experiment was conducted with the MatLab neural 
network toolbox for BPNN and the WEKA toolbox for 
other machine learning algorithms. Each classifier was 

trained using 10 samples of every door and tested with a 
different set of 10 samples of every door. The 
classification results are shown in table 1 for BPNN and 
in table 2 for the WEKA machine learning algorithms. 
 
The 2560/200/10 architecture was selected for BPNN, 
which means that the input layer has 2560 neurons, the 
hidden layer 200 neurons (this number was picked after 
we experimented with different number of neurons, see 
Table 1) and the output layer 10 neurons. The output 
layer is to produce target output as 
[{1000000000},{0100000000},…}]. The network is a 
two-layer log-sigmoid/log-sigmoid network. The log-
sigmoid transfer function was picked because its output 
range (0 to 1) is perfect for learning to output Boolean 
values. All training was done using back-propagation 
with both adaptive learning rate and momentum. The 
network was trained for a maximum of 5000 epochs or 
until the network mean squared error (MSE) falls beneath 
0.01. The final MSE was 0.00982 after 300 training 
epochs. The results give a 24 % error. 

Table 1. Results from BPNN 

   Architecture Training 
epochs 

Error % 

2560/20/10 903 34 
2560/40/10 1281 31 
2560/100/10 307 28 
2560/150/10 300 27 
2560/200/10 300 24 
2560/300/10 315 23 
2560/400/10 290 22 

 
The classification results for machine learning 

methods in WEKA vary greatly between algorithms and 
between different groups of algorithms, see Table 2.  

Table 2. Results from WEKA 

Group Algorithm Error % 
NaiveBayes 12 Bayes BayesNet 12 
IB1 7 
IBK (Cross-

validation) 
7 

LWL 
(NaïveBayes) 

11 Lazy 

IBK (5) 12 
NNge 10 
Part 27 
Ridor 34 
JRip 40 
DecisionTable 41 

Rules 

OneR 60 
SMO 8 
RBFNetwork 13 Functions 
SimpleLogistic 15 
RandomForest 14 
LMT 15 
J48 23 
REPTree 33 

Trees 

RandomTree 37 
Hyperpipes 11 Misc VFI 42 

 
Bayes is one of the better groups. BayesNet have similar 
performance to NaiveBayes, possibly due to construction 
of a network similar to NaiveBayes. 



Lazy is by far the best group of algorithms. The best 
algorithms in this group are IB1 and IBK with seven 
percent error on the test data. In addition, the equal result 
of IB1 and IBK suggest that a single neighbor was chosen 
during cross-validation. To investigate this further, we 
tested running IBK with five neighbors which resulted in 
an error percent of 12. 
 
LWL achieved poorer results than the other two 
algorithms in the group. This might be a result of it not 
using the nearest neighbor algorithm directly, but only for 
weighting the training set. Interestingly, it has similar 
performance to NaiveBayes, which is the algorithm used 
as base learner for LWL. Thus, it appears that local 
weighting has a small or no impact for this dataset. 
Functions have done well as a group, which is not 
particularly surprising based on the fact that the 
algorithms in this group tend to handle numerical features 
well. SMO is one of the best algorithms overall, which 
shows that support vector machines are worth trying for 
signal classification. It seems that the more complex the 
method, the better the result. 
 
The Trees group is split into two groups according to the 
results. In the first group are RandomForest and LMT. 
These are methods that either build trees with models at 
their leaves or combine several trees. The other tree 
inducers, which create trees with a single class at the 
leaves, achieve much poorer results. These differences in 
performance might be the result of more complex trees 
having to be induced by the simpler algorithms due to 
simpler leaves, numerous classes and only numerical 
features resulting in binary splitting. In addition, the 
models of LMT and NBTree, logistic regression and 
naïve Bayes, perform well separately for this dataset. 
The Rules group is probably the worst group of all. NNge 
is the only rule inducer that performs well, and it is a 
nearest neighbor algorithm. The other algorithms perform 
poorly, possibly due to being better at handling nominal 
rather than numerical features. 
 
The algorithms in the Miscellaneous group vary greatly 
in performance. Hyperpipes have a low error percent, 
while VF1 have a high error percent. This shows that one 
should always test the simplest algorithms first before 
using the more complex and computational intensive 
methods. 

Experiment 2: Four Categories 

Four categories of infrasound events are of interest in this 
section. The data were collected from different 
infrasound sensor arrays with different geometries and 
different locations. Details of the data are given in Table 
3. 

Table 3. Infrasound data summary 

Event Type No. of 
Events 

No. of       
Samples 

Meteorites 4 30 
Vehicle 3 27 
Man-made explosion 8 24 
Opening-closing doors 10 27 

 

To measure the classification accuracy, a 10-fold cross-
validation technique is used in this experiment. That is, 
the whole dataset is partitioned into 10 subsets. Then 9 of 
the subsets are used as the training set, and the tenth is 
used as the test set. This process is repeated 10 times, 
once for each subset used as the training set. 
Classification performance comes from the average of 
these 10 runs. This technique ensures that the training and 
test sets are disjoint, see Table 4. 

Table 4. Results from WEKA 

Group Algorithm Error % 
NaiveBayes 16 Bayes BayesNet 6 
IB1 1 
IBK (Cross-

validation) 
1 

LWL (NaïveBayes) 12 
Lazy 

IBK (5) 6 
NNge 19 
Part 12 
Ridor 13 
JRip 19 
DecisionTable 10 

Rules 

OneR 21 
SMO 6 
RBFNetwork 12 Functions 
SimpleLogistic 6 
RandomForest 7 
LMT 5 
J48 11 
REPTree 19 

Trees 

RandomTree 18 
Hyperpipes 20 Misc VFI 6 

5. CONCLUSIONS 

Features based on wavelet transform methods proven 
effective for the analysis and characterization of 
infrasound signals when combined with the best state-of-
the-art machine learning methods from the WEKA 
toolbox. The best of these methods, IB1, yields only 
seven percent error on the one category test data whereas 
neural networks as implemented in MatLab gave more 
than a twenty percent error for all the architectures that 
we tried. 
This shows how important it is to choose the appropriate 
machine learning algorithm for a given problem domain 
and that there are huge and domain specific variations 
between the algorithms. 
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Appendix B

ADATE Boost

1 (∗ s t a r t b o o s t i n g ∗)
2 exception Asse r t i onError of s t r i n g ;
3
4 fun a s s e r t ( f a l s e ) = raise Asse r t i onError ( ”” )
5 | a s s e r t ( t rue ) = ( ) ;
6
7 (∗
8 ∗ a l l i n s t a n c e s s t a r t w i th a we i gh t so t h a t t h e sum o f a l l w e i g h t s i s one
9 ∗ @param numInstances t h e number o f i n s t a n c e s to make we i g h t s f o r

10 ∗)
11 fun c r e a t e I n i t i a lWe i gh t s ( numInstances ) =
12 Vector . tabu la t e ( numInstances , fn => 1 .0 / r e a l ( numInstances ) ) ;
13
14 (∗
15 ∗ Returns t h e e r r o r r a t e based on the r e s u l t s and the co r r e spond ing we i g h t s
16 ∗ More s p e c i f i c a l l y , t h e e r rorRate i s t h e sum o f a l l w e i g h t s f o r t h e
17 ∗ i n c o r r e c t l y c l a s s i f i e d i n s t a n c e s
18 ∗ @param we i g h t s t h e we i g h t s o f t h e d i f f e r e n t i n s t a n c e s
19 ∗ @param r e s u l t s a boo l ean v e c t o r which s p e c i f y whether an i n s t an c e was
20 ∗ c o r r e c t l y c l a s s i f i e d or not
21 ∗
22 ∗ @return the er rorRate
23 ∗)
24 fun errorRate ( weights , r e s u l t s ) =
25 Vector . f o l d r i ( fn ( i , weight , e r rorRate ) => i f Vector . sub ( r e s u l t s , i ) then errorRate

else errorRate + weight ) 0 .0 weights
26
27
28 (∗
29 ∗ Reweigh t s t h e we i g h t s so t h a t i n s t a n c e s t h a t are c l a s s i f i e d c o r r e c t l y are
30 ∗ d i v i d e d by e ∗ (1 − e ) , where e i s t h e we i gh t ed e r r o r
31 ∗ @param r e s u l t s a boo l ean v e c t o r w i th t h e r e s u l t s o f t h e b e s t I n d i v i d i u a l
32 ∗ @param we i g h t s a r e a l v e c t o r w i th t h e we i gh t o f each i n s t an c e
33 ∗ @param errorRate t h e er rorRate which be used to r ewe i g h t
34 ∗ @return the r ewe i g h t e d v e c t o r
35 ∗
36 ∗)
37 fun reweight ( Weights , Results , ErrorRate ) =
38 l et
39 val ( ) = a s s e r t ( Vector . l ength ( Weights ) = Vector . l ength ( Resu l t s ) ) ;
40
41 val Beta = ErrorRate / ( 1 . 0 − ErrorRate ) ;
42
43 fun updatedWeight ( Index , Weight ) =
44 i f Vector . sub ( Results , Index ) then Weight ∗ Beta else Weight ;
45
46 in
47 Vector . mapi updatedWeight Weights
48 end ;
49
50 (∗
51 ∗ Normal i zes t h e we i g h t s so t h a t t h e sum o f a l l w e i g h t s are one
52 ∗ @param we i g h t s t h e we i g h t s which w i l l be norma l i z ed
53 ∗ @return norma l i z ed v e c t o r
54 ∗)
55 fun normal ize weights = l et
56 val sumWeights = Vector . f o l d r (op +) 0 .0 weights ;
57 in

97
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58 Vector .map ( fn ( weight ) => weight / sumWeights ) weights
59 end ;
60
61
62 (∗
63 ∗ r e t u rn s t h e ou tpu t w i th t h e most v o t e s .
64 ∗ I f t h e r e are no vo t e s , t h e f un c t i o n r e t u rn s NONE
65 ∗ @param eq f un c t i o n which r e t u rn s whether two ou tpu t are t h e same
66 ∗ @param we i gh t edOutpu t s a l i s t o f t h e ou t pu t s o f t h e boo s t e d i n d i v i d u a l s and
67 ∗ t h e i r w e i g h t s ( t h e e r r o r s in t r a i n i n g )
68 ∗ @return the ou tpu t o f t h e v o t i n g . NONE i s r e tu rned i f none o f t h e i n d i v i d u a l s
69 ∗ vo t e
70 ∗)
71 fun majorityVote ( eq , [ ] ) = NONE
72 | majorityVote ( eq : ’ output ∗ ’ output −> bool ,
73 weightedOutputs : ( r e a l ∗ ’ output ) l i s t ) : ’ output opt ion = l et
74
75 (∗
76 ∗ adds t h e we i gh t o f x and y i f t h ey are e qua l o t h e rw i s e y i s r e t u rned
77 ∗)
78 fun addWeightedOutput (
79 (wx , cx ) , y as (wy , cy ) ) =
80 i f eq ( cx , cy ) then (wy − Real .Math . ln (wx / ( 1 . 0 − wx) ) , cy ) else y ;
81
82 (∗
83 ∗ r e t u rn s t h e sum o f a l l w e i g h t s o f a l l w e i g h tC l a s s e s in l t h a t
84 ∗ have an c l a s s e qua l t o c l a s s
85 ∗)
86 fun sumWeightedOutput l ( ( weight , output ) : r e a l ∗ ’ output ) =
87 L i s t . f o l d r addWeightedOutput ( 0 . 0 , output ) l ;
88
89 (∗
90 ∗ r e t u rn s a l i s t where t h e sum o f each item ’ s c l a s s i s summed
91 ∗)
92 fun sumWeightedOutputs l = L i s t .map ( sumWeightedOutput l ) l ;
93
94 (∗
95 ∗ r e t u rn s t r u e i f t h e we i gh t o f x i s b i g g e r than y ’ s , o t h e rw i s e f a l s e
96 ∗)
97 fun g r ea t e r ( x as (wx , cx ) : r e a l ∗ ’ output , y as (wy , cy ) : r e a l ∗ ’ output ) =
98 i f wx > wy then x else y ;
99

100 in
101 SOME (#2( L i s t . f o l d r g r e a t e r (hd weightedOutputs ) ( sumWeightedOutputs

weightedOutputs ) ) )
102 end
103
104
105
106 (∗
107 ∗ S e l e c t s t h e i n d i d u a l w i th t h e l ow e s t e r r o r r a t e acco rd ing to t h e s p e c i f i e d
108 ∗ we i g h t s and r e s u l t s
109 ∗
110 ∗ @param Weights t h e we i g h t s o f each i n s t an c e
111 ∗ @param Re su l t sFo r I n d i s a v e c t o r w i th t h e i n d i v i d u a l s and t h e i r r e s u l t s f o r
112 ∗ each i n s t an c e
113 ∗
114 ∗ @return the index o f t h e i n d i v i d u a l w i th t h e l ow e s t e r r o r r a t e a l ong w i th i t s
115 ∗ e r r o r r a t e
116 ∗)
117 fun s e l e c tB e s t I n d i I (
118 Weights : r e a l vector ,
119 Resu l t sFor Ind i s : ( ’ a ∗ bool vec tor ) vector ) : ( i n t ∗ r e a l ) =
120 l et
121 val ErrorRates = Vector .map ( fn ( Indi , Resu l t s ) => errorRate ( Weights , Resu l t s ) )

Resu l t sFor Ind i s ;
122
123 fun l e s sEr ro rRate ( I ,
124 ErrorRateX ,
125 Y as ( IY , ErrorRateY ) ) =
126 i f ErrorRateX < ErrorRateY then ( I , ErrorRateX ) else Y;
127 in
128 Vector . f o l d r i l e s sEr ro rRate (0 , Vector . sub ( ErrorRates , 0) ) ErrorRates
129 end
130
131
132 (∗
133 ∗ Performs b o o s t i n g by s e l e c t i n g a program at each i t e r a t i o n t h a t i s b e s t on
134 ∗ t h e we i gh t ed d a t a s e t . The d a t a s e t i s r ewe i g h t e d a f t e r each i t e r a t i o n
135 ∗ acco rd ing to t h e per formance o f t h e s e l e c t e d i n d i v i d u a l , so t h a t i n s t a n c e s
136 ∗ t h a t i t g o t wrong r e c e i v e h i g h e r we i g h t s .
137 ∗ @param numI t e ra t i on s t h e number o f i t e r a t i o n s to use
138 ∗ @param I n d i L i s t t h e l i s t o f i n d i v i d u a l t o s e l e c t from
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139 ∗
140 ∗ I t r e l i e s on the i sCo r r e c t f u n c t i o n which r e t u rn s whether an e lement in
141 ∗ OutputEva l s i s t r u e or not
142 ∗
143 ∗ @return a l i s t o f programs a long w i th t h e i r w e i g h t s
144 ∗)
145 fun boost ing (
146 NumIterations : int ,
147 I nd iL i s t : i nd i v i dua l l i s t ) : ( r e a l ∗ i n d i v i dua l ) l i s t =
148 l et
149
150 val I nd i s = Vector . f romList I nd iL i s t ;
151 val NumIndis = Vector . l ength Ind i s ;
152
153 (∗
154 ∗ Change th e number o f i n s t a n c e s i f not enough i n d i s
155 ∗ Shou ld perhaps r a i s e an e x c e p t i o n i n s t e a d
156 ∗)
157 val NumIterations = i f NumIterations > NumIndis then NumIndis else NumIterations ;
158
159 (∗
160 ∗ Crea te s a new v e c t o r where i tem i i s removed
161 ∗ @param Ind i s t h e o r g i n a l Vector
162 ∗ @param I the index o f t h e i tem to remove
163 ∗ @return a v e c t o r where i tem i i s removed
164 ∗)
165 fun removeAt ( Indi s , I ) =
166 i f I < 0 orelse I >= ( Vector . l ength Ind i s ) then
167 raise Subscr ipt
168 else
169 Vec to rS l i c e . concat [ Vec to rS l i c e . s l i c e ( Ind i s , 0 , SOME I ) , Vec to rS l i c e . s l i c e

( Ind i s , I + 1 , NONE) ] ;
170
171 (∗
172 ∗ a boo l Vector Vector where one i tem ho l d s whether an Ind i i s c o r r e c t on
173 ∗ an g i v en i n s t an c e
174 ∗)
175 val Resu l t s =
176 Vector .map
177 ( fn Ind i =>
178 ( Indi , Vector .map
179 ( fn OutputEval => i sCo r r e c t ( OutputEval ) )
180 ( outputEvals Ind i ) ) )
181 Ind i s ;
182
183
184 fun boost ingHe lper ( I t e r a t i on , Weights , IndiAndResults ) =
185 i f I t e r a t i o n >= NumIterations then
186 n i l
187 else
188 l et
189 (∗
190 ∗ S e l e c t t h e b e s t i n d i
191 ∗)
192 val ( Best Ind i I , ErrorRate ) = s e l e c tB e s t I n d i I ( Weights , IndiAndResults ) ;
193
194 val ( BestIndi , Bes t Ind iResu l t s ) = Vector . sub ( IndiAndResults , Be s t Ind i I ) ;
195
196 in
197
198 (∗
199 ∗ Requirement o f b o o s t i n g t h a t t h e c l a s s i f i e r i s b e t t e r than
200 ∗ 0 . 5 , cannot use e r r o r = 0 .0 s i n c e d i v i s i o n w i l l be i n f when
201 ∗ v o t i n g
202 ∗)
203 i f ErrorRate > 0 .5 orelse ErrorRate <= 0.0 then
204 (∗
205 ∗ on l y i n c l u d e i f f i r s t i t e r a t i o n s i n c e i t w i l l overpower
206 ∗ t h e o t h e r members in a committee l a r g e r than one
207 ∗)
208 i f I t e r a t i o n = 0 then
209 [ ( ErrorRate , Best Ind i ) ]
210 else
211 n i l
212 else
213 (∗
214 ∗ c a l l s b o o s t i n g h e l p e r w i th norml i zed , r ewe i g h t e d
215 ∗ we i g h t s and the b e s t I nd i removed from the I n d i s l i s t
216 ∗)
217 ( ErrorRate , Best Ind i ) : : boost ingHe lper (
218 I t e r a t i o n + 1 ,
219 normal ize (
220 reweight (
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221 Weights , Best Ind iResu l t s , ErrorRate ) ) ,
222 removeAt ( IndiAndResults , Be s t Ind i I ) )
223 end ;
224 in
225 boost ingHe lper (0 , c r e a t e I n i t i a lWe i gh t s (NumberOfInputs ) , Resu l t s )
226 end ;
227
228
229 (∗
230 ∗ r e t u rn s a l i s t w i t h t h e ou tpu t f o r each i n s t an c e a f t e r each i n d i v i d u a l has
231 ∗ vo t ed . I n s t an c e s where no v o t e s are r e c e i v e d are removed .
232 ∗
233 ∗ @param eq e q u a l i t y f u n c t i o n f o r whether to ou t pu t s are e qua l
234 ∗ @param OutputForInd i s a l i s t o f v e c t o r s w i th t h e ou t pu t s and we i g h t s o f
235 ∗ t h e d i f f e r e n t i n d i v i d u a l s
236 ∗ @return a l i s t o f t u pp l e s , where each t u p p l e c o n s i s t s o f an i n s t an c e number
237 ∗ and the ou tpu t a f t e r v o t i n g f o r t h a t i n s t a n c e s . However , on l y i n s t a n c e s t h a t
238 ∗ t h a t r e c e i v e any v o t e s are r e t u rned
239 ∗
240 ∗)
241 fun weightedTestOutputs ( eq , [ ] ) = [ ]
242 | weightedTestOutputs (
243 eq : ’ output ∗ ’ output −> bool ,
244 OutputsForIndis : ( ( r e a l ∗ ’ output opt ion ) vec tor ) l i s t ) : ( i n t ∗ ’ output ) l i s t =
245 l et
246 (∗ number o f ou t pu t s f o r t e s t i n s t a n c e s ∗)
247 val NumIndis = Vector . l ength (hd OutputsForIndis )
248
249 (∗
250 ∗ removes a l l NONE from a l i s t
251 ∗)
252 fun removeNones ( n i l ) = n i l
253 | removeNones ( ( , NONE) : : xs ) = removeNones ( xs )
254 | removeNones ( ( Weight , SOME(X) ) : : xs ) = (Weight , X) : : removeNones ( xs ) ;
255
256
257 val Lower = NumberOfInputs
258
259 (∗
260 ∗ c r e a t e s a l i s t where each i tem con t a i n s a l i s t o f t h e ou t pu t s f o r
261 ∗ each i n d i v i d u a l and t h e i r we i gh t .
262 ∗)
263 val OutputsForInstances =
264 L i s t . t abu la t e (NumIndis , fn I => ( Lower + I ,
265 removeNones (map ( fn OutputForIndi => Vector . sub ( OutputForIndi , I ) )

OutputsForIndis ) ) )
266 in
267
268 (∗
269 ∗ r e t u rn s a v e c t o r where each i tem con t a i n s t u p p l e w i th t h e i n s t an c e number
270 ∗ and the vo t ed ou tpu t . I n s t an c e s t h a t cannot be c l a s s i f i e d are removed
271 ∗)
272 removeNones (map ( fn ( I , weightedOutputs ) =>
273 ( I , majorityVote ( eq , weightedOutputs ) ) ) OutputsForInstances )
274 end ;
275
276
277
278 (∗
279 ∗ S e l e c t s a s e t o f i n d i v i d u a l s from the s p e c f i e d kingdoms us ing a form o f
280 ∗ b o o s t i n g . These i n d i v i d u a l s are combined through v o t i n g and the e v a l u a t i o n
281 ∗ v a l u e o f v o t i n g i s r e t u rned .
282 ∗ @param NumItera t ions t h e number o f i t e r a t i o n s to perform bo o s t i n g
283 ∗ @param ( Fat , S l ims ) t h e kingdoms
284 ∗
285 ∗ @return the e v a l v a l u e o f t h e boo s t e d committee
286 ∗)
287 fun boost ingTestEvalValue ( NumIterations , ( Fat , Sl ims ) : kingdom ) = l et
288 (∗
289 ∗ S e l e c t s t h e i n d i s u s ing b o o s t i n g
290 ∗ The kingdoms are combined s imar l y to sharkpoo l , t h i n k i t works
291 ∗)
292 val I nd i s = boost ing ( NumIterations , i s i f r emov e dup l i c a t e s (
293 Populat ion . s tandardInd i s Fat @
294 f lat map ( Populat ion . s tandardIndis , Sl ims ) ) )
295
296 (∗
297 ∗ Combines t h e e l emen t s o f t h e two v e c t o r s i n t o one
298 ∗)
299 fun makeWeightedOuput (Weight , Outputs ) =
300 Vector .map ( fn Output => (Weight , Output ) ) Outputs
301
302 (∗
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303 ∗ r e t u rn s a l i s t o f v e c t o r s f o r each i n d i v i d u a l . Each v e c t o r c on t a i n s t h e
304 ∗ we i gh t ed t e s t o u t p u t s
305 ∗)
306 val OutputsForIndis = map ( fn (Weight , Ind i ) =>
307 makeWeightedOuput (
308 Weight ,
309 makeTestOutputs(#program Ind i ) ) )
310 Ind i s ;
311
312 (∗
313 ∗ l i s t w i th a l l o u t pu t s f o r t h e i n s t a n c e s t h a t r e c e i v e d any v o t e s
314 ∗)
315 val f ina lOutputs = weightedTestOutputs ( Spec . main range eq , OutputsForIndis ) ;
316 in
317 votedTestEvalValue f ina lOutputs
318 end
319 (∗ end b o o s t i n g ∗)



Appendix C

Thyroid Disease Specification

1 datatype age = age NONE | age SOME of r e a l
2 datatype sex = sexM | sexF | sex NONE
3 datatype on thyrox ine = on thyrox ine f | on thyrox ine t
4 datatype query on thyrox ine = query on thyrox ine f | query on thyrox ine t
5 datatype on ant i thy ro id med i ca t i on = on ant i thy ro i d med i c a t i on f |

on ant i thy ro id med i ca t i on t
6 datatype s i c k = s i c k f | s i c k t
7 datatype pregnant = pregnant f | pregnantt
8 datatype thy ro id su rg e ry = thy r o i d su r g e r y f | t hy r o i d su r g e r y t
9 datatype I131 treatment = I131 t r ea tment f | I131 t reatmentt

10 datatype query hypothyroid = query hypothyro id f | query hypothyro idt
11 datatype query hyperthyro id = query hyper thyro id f | query hyper thyro idt
12 datatype l i th ium = l i t h i um f | l i t h iumt
13 datatype g o i t r e = g o i t r e f | g o i t r e t
14 datatype tumor = tumorf | tumort
15 datatype hypop i tu i ta ry = hypop i tu i t a ry f | hypop i tu i ta ry t
16 datatype psych = psychf | psycht
17 datatype TSH measured = TSH measuredf | TSH measuredt
18 datatype TSH = TSH NONE | TSH SOME of r e a l
19 datatype T3 measured = T3 measuredf | T3 measuredt
20 datatype T3 = T3 NONE | T3 SOME of r e a l
21 datatype TT4 measured = TT4 measuredf | TT4 measuredt
22 datatype TT4 = TT4 NONE | TT4 SOME of r e a l
23 datatype T4U measured = T4U measuredf | T4U measuredt
24 datatype T4U = T4U NONE | T4U SOME of r e a l
25 datatype FTI measured = FTI measuredf | FTI measuredt
26 datatype FTI = FTI NONE | FTI SOME of r e a l
27 datatype TBG measured = TBG measuredf | TBG measuredt
28 datatype r e f e r r a l s o u r c e = referral sourceWEST | referral sourceSTMW |

re fe r ra l sourceSVHC | r e f e r r a l s o u r c e SV I | re ferra l sourceSVHD |
r e f e r r a l s o u r c e o t h e r

29 datatype therapy = therapyrep lacement therapy | therapyunderreplacement |
therapyoverreplacement | therapynegat ive

30
31
32 fun r cons tLe s s ( ( X, C ) : r e a l ∗ r cons t ) : bool =
33 case C of r cons t ( Compl , StepSize , Current ) => r e a lL e s s ( X, Current )
34
35 fun to r ( C : r cons t ) : r e a l =
36 case C of r cons t ( Compl , StepSize , Current ) => Current
37
38
39 fun f ( (X0age , X1sex , X2on thyroxine , X3query on thyroxine , X4on ant i thyro id medicat ion ,

X5sick , X6pregnant , X7thyro id surgery , X8I131 treatment , X9query hypothyroid ,
X10query hyperthyroid , X11lithium , X12goitre , X13tumor , X14hypopituitary , X15psych ,
X16TSH measured , X17TSH, X18T3 measured , X19T3 , X20TT4 measured , X21TT4 ,
X22T4U measured , X23T4U, X24FTI measured , X25FTI , X26TBG measured ,
X27 r e f e r r a l s ou r c e ) :

40 age ∗ sex ∗ on thyrox ine ∗ query on thyrox ine ∗ on ant i thy ro id med i ca t i on ∗ s i c k ∗
pregnant ∗ thy ro id su rg e ry ∗ I131 treatment ∗ query hypothyroid ∗
query hyperthyro id ∗ l i th ium ∗ g o i t r e ∗ tumor ∗ hypop i tu i ta ry ∗ psych ∗
TSH measured ∗ TSH ∗ T3 measured ∗ T3 ∗ TT4 measured ∗ TT4 ∗ T4U measured ∗ T4U
∗ FTI measured ∗ FTI ∗ TBG measured ∗ r e f e r r a l s o u r c e

41 ) : therapy =
42 raise D1
43
44

102
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45 fun main ( (X0age , X1sex , X2on thyroxine , X3query on thyroxine ,
X4on ant i thyro id medicat ion , X5sick , X6pregnant , X7thyro id surgery , X8I131 treatment
, X9query hypothyroid , X10query hyperthyroid , X11lithium , X12goitre , X13tumor ,
X14hypopituitary , X15psych , X16TSH measured , X17TSH, X18T3 measured , X19T3 ,
X20TT4 measured , X21TT4 , X22T4U measured , X23T4U, X24FTI measured , X25FTI ,
X26TBG measured , X27 r e f e r r a l s ou r c e ) :

46 age ∗ sex ∗ on thyrox ine ∗ query on thyrox ine ∗ on ant i thy ro id med i ca t i on ∗ s i c k ∗
pregnant ∗ thy ro id su rg e ry ∗ I131 treatment ∗ query hypothyroid ∗
query hyperthyro id ∗ l i th ium ∗ g o i t r e ∗ tumor ∗ hypop i tu i ta ry ∗ psych ∗
TSH measured ∗ TSH ∗ T3 measured ∗ T3 ∗ TT4 measured ∗ TT4 ∗ T4U measured ∗ T4U
∗ FTI measured ∗ FTI ∗ TBG measured ∗ r e f e r r a l s o u r c e

47 ) : therapy =
48 f ( X0age , X1sex , X2on thyroxine , X3query on thyroxine , X4on ant i thyro id medicat ion ,

X5sick , X6pregnant , X7thyro id surgery , X8I131 treatment , X9query hypothyroid ,
X10query hyperthyroid , X11lithium , X12goitre , X13tumor , X14hypopituitary , X15psych
, X16TSH measured , X17TSH, X18T3 measured , X19T3 , X20TT4 measured , X21TT4 ,
X22T4U measured , X23T4U, X24FTI measured , X25FTI , X26TBG measured ,
X27 r e f e r r a l s ou r c e )

49
50
51 %%
52
53
54
55 val Inputs = [
56 ( age SOME ˜0.3436123348017621 , sexF , on thyrox inet , query on thyrox ine f ,

on ant i thy ro id med i ca t i on f , s i ck t , pregnantf , t hy ro id su rg e ry f , I131 t reatment f ,
query hypothyro idf , query hyperthyro id f , l i th iumf , g o i t r e f , tumorf , hypop i tu i ta ry f ,
psychf , TSH measuredt , TSH SOME ˜0.4968018566212889 , T3 measuredf , T3 NONE,
TT4 measuredt , TT4 SOME ˜0.24065420560747663 , T4U measuredt , T4U SOME
˜0.21014492753623187 , FTI measuredt , FTI SOME ˜0.16921119592875317 , TBG measuredf ,
r e f e r r a l s o u r c e o t h e r ) ,

57
58 [ sn ip . . . sn ip ]
59
60 ( age SOME ˜0.32158590308370044 , sexF , on thyrox ine f , query on thyrox ine f ,

on ant i thy ro id med i ca t i on f , s i c k f , pregnantf , t hy ro id su rg e ry f , I131 t reatment f ,
query hypothyro idf , query hyperthyro id f , l i th iumf , g o i t r e f , tumorf , hypop i tu i ta ry f ,
psychf , TSH measuredt , TSH SOME ˜0.4996886763082671 , T3 measuredt , T3 SOME
˜0.3341232227488152 , TT4 measuredt , TT4 SOME ˜0.2266355140186916 , T4U measuredt ,
T4U SOME ˜0.18115942028985504 , FTI measuredt , FTI SOME ˜0.17430025445292618 ,
TBG measuredf , r e f e r r a l s o u r c e SV I )

61 ]
62
63
64 val Outputs = [
65 therapynegat ive ,
66
67 [ sn ip . . . sn ip ]
68
69 therapynegat ive
70 ]
71
72 val Al l output s = Vector . f romList ( Outputs @ Test outputs )
73
74 val Funs to use = [
75 ” f a l s e ” , ” t rue ” ,
76 ” r e a lL e s s ” , ” realAdd” , ” r ea lSubt ra c t ” , ” r ea lMu l t i p l y ” ,
77 ” r ea lD iv id e ” , ” s igmoid ” ,
78 ” tor ” , ” r cons tLes s ” ,
79 ” therapyrep lacement therapy ” , ” therapyunderreplacement ” , ” therapyoverreplacement ” , ”

therapynegat ive ”
80 ]
81
82 val Re j e c t fun s = [ ]
83 fun r e s t o r e t r an s f o rm D = D
84
85 structure Grade : GRADE =
86 struct
87
88 type grade = unit
89 val zero = ( )
90 val op+ = fn ( , ) => ( )
91 val comparisons = [ fn => EQUAL ]
92 val t oS t r ing = fn => ””
93 val f romStr ing = fn => SOME()
94
95 val pack = fn => ””
96 val unpack = fn =>()
97
98 val po s t p r o c e s s = fn => ( )
99

100 val toRealOpt = NONE



APPENDIX C. THYROID DISEASE SPECIFICATION 104

101
102 end
103
104 val Abstrac t types = [ ]
105
106 fun output eva l fun ( I : int , , Y ) =
107 i f Vector . sub ( Al l outputs , I ) <> Y then
108 { numCorrect = 0 , numWrong = 1 , grade = ( ) }
109 else
110 { numCorrect = 1 , numWrong = 0 , grade = ( ) }
111
112
113 val Max output genus card = 4
114 val Max output genus complexity = 1 .2
115
116 val Max time l imit = 1024
117 val Time l imi t base = 1024.0
118
119
120 val Number o f output at t r ibutes = 4



Appendix D

Pruning Specification 1

1 fun r cons tLe s s ( ( X, C ) : r e a l ∗ r cons t ) : bool =
2 r e a lL e s s ( X, to r C )
3
4 fun l og2 ( value : r e a l ) : r e a l =
5 r ea lD iv id e ( log10 ( value ) , log10 ( 2 . 0 ) )
6
7 datatype c l a s s v a l u e = Class of i n t
8 datatype a t t r i b u t e v a l u e = Nominal of i n t | Continuous of r e a l
9 datatype s p l i t p o i n t = NominalSpl i t of i n t ∗ i n t | Cont inuousSpl i t of i n t ∗ r e a l

10 datatype c a l c u l a t e d d i s t r i b u t i o n = Calcu la tedDis t of c l a s s v a l u e ∗ r e a l ∗ r e a l
11 datatype c t r e e = CLeaf of c a l c u l a t e d d i s t r i b u t i o n ∗ c l a s s v a l u e
12 | CDN of s p l i t p o i n t ∗ c a l c u l a t e d d i s t r i b u t i o n ∗ c t r e e l i s t
13 and c t r e e l i s t = CTreeListNi l | CTreeListCons of c t r e e ∗ c t r e e l i s t
14
15
16 fun f ( curTree : c t r e e ) : ( r e a l ∗ c t r e e ) =
17 l et
18 fun er rorEst imate ( ( c , n) : r e a l ∗ r e a l ) : r e a l =
19 case r e a lD iv id e ( r ea lSubt ra c t (n , c ) , n ) of
20 e =>
21 case to r ( r cons t (1 , 0 . 1 , 0 . 69 ) ) of
22 z =>
23 case z ∗ z of
24 z2 =>
25 r ea lD iv id e (
26 realAdd (
27 realAdd (
28 e ,
29 r ea lD iv id e ( z2 ,
30 r ea lMu l t i p l y (
31 tor ( r cons t (1 , 0 . 5 , 2 . 0 ) ) ,
32 n
33 )
34 )
35 ) ,
36 r ea lMu l t i p l y ( z ,
37 sq r t (
38 realAdd (
39 r ea lSubt ra c t (
40 r ea lD iv id e ( e , n) ,
41 r ea lD iv id e (
42 e ∗ e ,
43 n
44 )
45 ) ,
46 r ea lD iv id e ( z2 ,
47 r ea lMu l t i p l y (
48 tor ( r cons t (1 , 0 . 8 , 4 . 0 ) ) ,
49 n ∗ n
50 )
51 )
52 )
53 )
54 )
55 ) ,
56 realAdd ( tor ( r cons t (1 , 0 . 2 , 1 . 0 ) ) , r e a lD iv id e ( z2 , n) )
57 )

105
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58 in
59 l et
60 fun pruneCTreeList t r e e L i s t =
61 case t r e e L i s t of
62 CTreeListNi l => ( to r ( r cons t ( 0 , 0 . 2 , 0 .0 ) ) , CTreeListNi l )
63 | CTreeListCons (x , xs ) =>
64 case f ( x ) of
65 Pair2 as ( errorX , prunedX ) =>
66 case pruneCTreeList ( xs ) of
67 Pair3 as ( errorXs , prunedXs ) => ( realAdd ( errorX , errorXs ) ,
68 CTreeListCons ( prunedX , prunedXs ) )
69 in
70 case curTree of
71 CLeaf ( d i s t as Calcu latedDis t ( ClassVal1 as Class Val1 , Val2 , Val3 ) ,
72 c ’ as Class Val5 ) => (
73 case d i s t of
74 Calcu la tedDis t ( mClass as Class Val4 , numInstMajorityClass , num) =>
75 (
76 r ea lMu l t i p l y ( num, er rorEst imate ( numInstMajorityClass ,num)
77 ) ,
78 curTree
79 )
80 )
81 | CDN( sp l i tPo in t ,
82 d i s t ’ as Calcu latedDis t ( ClassVal1 ’ as Class Val1 ’ , Val2 ’ , Val3 ’ ) ,
83 ch i l d r en ) => (
84 case d i s t ’ of
85 Calcu la tedDis t (mClass ’ as Class Val4 ’ , numInstMajorityClass ’ , num’ ) =>
86 case pruneCTreeList ( ch i l d r en ) of
87 Pair1 as ( ch i ldErrorOnlyMult ip l i ed , prunedChildren ) =>
88
89 case r e a lD iv id e ( ch i ldErrorOnlyMult ip l i ed , num’ ) of
90 ch i l dEr ro r =>
91 case er rorEst imate ( numInstMajorityClass ’ , num’ ) of
92 e r r o r =>
93 case ch i l dEr ro r < e r r o r of
94 true =>
95 ( r ea lMu l t i p l y (num’ , ch i l dEr ro r ) , CDN( sp l i tPo in t , d i s t ’ ,

prunedChildren ) )
96 | f a l s e =>
97 ( r ea lMu l t i p l y (num’ , e r r o r ) , CLeaf ( d i s t ’ , mClass ’ ) )
98 )
99 end

100 end
101
102 fun main ( curTree : c t r e e ) : c t r e e =
103 case f ( curTree ) of
104 ( er ror , prunedTree ) => prunedTree
105
106 %%
107
108 datatype i n s t ance = Ins tanceN i l | InstanceCons of a t t r i b u t e v a l u e ∗ i n s t ance
109 datatype t r a i n i n g i n s t a n c e = Tra in ingIns tance of ( i n s tance ∗ c l a s s v a l u e )
110 datatype d a t a s e t i n f o = DataSetInfo of i n t uncheckedArray ∗ i n t
111 datatype data = DataNil | DataCons of t r a i n i n g i n s t a n c e ∗ data
112 datatype d i s t r i b u t i o n = Di s t r i bu t i onN i l | Distr ibut ionCons of r e a l ∗ d i s t r i b u t i o n
113 datatype da t a d i s t r i b u t i o n = DataDis t r ibut ion of data ∗ d i s t r i b u t i o n
114 datatype d a t a s p l i t = DataSp l i tN i l | DataSplitCons of da t a d i s t r i b u t i o n ∗ d a t a s p l i t
115 datatype s p l i t p o i n t l i s t = Sp l i tPo i n tL i s tN i l | Sp l i tPo intL i s tCons of s p l i t p o i n t ∗

s p l i t p o i n t l i s t
116 datatype t r e e =
117 Leaf of d i s t r i b u t i o n ∗ c l a s s v a l u e |
118 DN of s p l i t p o i n t ∗ d i s t r i b u t i o n ∗ t r e e l i s t
119 and t r e e l i s t = TreeL i s tN i l | TreeListCons of t r e e ∗ t r e e l i s t
120
121 (∗ %{{{ Begin id3 ∗)
122 fun getClassLength ( dataSet In fo : d a t a s e t i n f o ) : i n t =
123 case dataSet In fo of
124 DataSetInfo ( a t t r i bu t e In f o , c la s sLength ) => c la s sLength
125
126 fun getClassValue ( t r a i n i n g In s t an c e : t r a i n i n g i n s t a n c e ) : c l a s s v a l u e =
127 case t r a i n i n g In s t an c e of
128 Tra in ingIns tance (a , c l a s sVa lue ) => c l a s sVa lue
129
130 fun dataHasOnlyClass ( ( d , c1 as Class ( v1 ) ) : data ∗ c l a s s v a l u e ) : bool =
131 case d of
132 DataNil => t rue
133 | DataCons (x , xs ) =>
134 case x of
135 Tra in ingIns tance ( i , c2 as Class ( v2 ) ) =>
136 case v1 = v2 of
137 true => dataHasOnlyClass ( xs , c1 )
138 | f a l s e => f a l s e
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139
140 fun i sSma l l ( ( d , number ) : data ∗ i n t ) : bool =
141 case number = 0 of
142 true => (
143 case d of
144 DataNil => t rue
145 | DataCons (x , xs ) => f a l s e
146 )
147 | f a l s e => (
148 case d of
149 DataNil => t rue
150 | DataCons (x , xs ) => i sSma l l ( xs , number − 1)
151 )
152
153 fun dist r ibut ionSum (d : d i s t r i b u t i o n ) : r e a l =
154 case d of
155 D i s t r i bu t i onN i l => 0 .0
156 | Distr ibut ionCons (x , xs ) => realAdd (x , d i s t r ibut ionSum ( xs ) )
157
158 fun numInstancesMajor ityClass (d : d i s t r i b u t i o n ) : r e a l =
159 l et
160 fun he lpe r ( ( d , numMax) : d i s t r i b u t i o n ∗ r e a l ) : r e a l =
161 case d of
162 D i s t r i bu t i onN i l => numMax
163 | Distr ibut ionCons (x , xs ) =>
164 he lpe r (
165 xs ,
166 case numMax < x of
167 true => x
168 | f a l s e => numMax
169 )
170 in
171 he lpe r (d , 0 . 0 )
172 end
173
174 fun numInstances ( ( d , c ) : d i s t r i b u t i o n ∗ c l a s s v a l u e ) : r e a l =
175 l et
176 fun he lpe r ( ( d , index ) : d i s t r i b u t i o n ∗ i n t ) : r e a l =
177 case index < 1 of
178 true =>
179 ( case d of
180 D i s t r i bu t i onN i l => raise D1
181 | Distr ibut ionCons (x , xs ) => x )
182 | f a l s e => (
183 case d of
184 D i s t r i bu t i onN i l => raise D1
185 | Distr ibut ionCons (x , xs ) => he lpe r ( xs , index − 1)
186 )
187 in
188 case c of
189 Class ( index ) => he lpe r (d , index )
190 end
191
192 fun g e tD i s t r i bu t i on ( ( dInfo , d) : d a t a s e t i n f o ∗ data ) : d i s t r i b u t i o n =
193 l et
194 fun he lpe r ( ( d , index , c lassLength , count , dataLef t ) : data ∗ i n t ∗ i n t ∗ r e a l ∗ data )

: d i s t r i b u t i o n =
195 case index < c la s sLength of
196 f a l s e => Di s t r i bu t i onN i l
197 | t rue => (
198 case d of
199 DataNil => Distr ibut ionCons (
200 count ,
201 he lpe r ( dataLeft , index + 1 , c lassLength , 0 . 0 , DataNil ) )
202 | DataCons (x , xs ) =>
203 case getClassValue (x ) of
204 Class ( v ) =>
205 case v = index of
206 true => he lpe r ( xs , index , c lassLength , realAdd ( count , 1 . 0 ) , dataLef t

)
207 | f a l s e => he lpe r ( xs , index , c lassLength , count , DataCons (x ,

dataLef t ) )
208 )
209 in
210 case getClassLength ( dInfo ) of
211 cLength => he lpe r (d , 0 , cLength , 0 . 0 , DataNil )
212 end
213
214 fun major i tyClas s (d : d i s t r i b u t i o n ) : c l a s s v a l u e =
215 l et
216 fun he lpe r ( ( d i s t , bestIndex , bestValue , count ) : d i s t r i b u t i o n ∗ i n t ∗ r e a l ∗ i n t ) :

c l a s s v a l u e =
217 case d i s t of
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218 D i s t r i bu t i onN i l => Class ( best Index )
219 | Distr ibut ionCons (x , xs ) =>
220 case r e a lL e s s (x , bestValue ) of
221 true => he lpe r ( xs , bestIndex , bestValue , count + 1)
222 | f a l s e => he lpe r ( xs , count , x , count + 1)
223 in
224 he lpe r (d , 0 , ˜1000 .0 , 0)
225 end
226
227 fun partEntropy ( ( r a t i o ) : r e a l ) : r e a l =
228 r ea lSubt ra c t ( 0 . 0 ,
229 r ea lMu l t i p l y (
230 ra t i o ,
231 log2 ( r a t i o )
232 )
233 )
234
235 fun entropy ( ( d i s t , t o t a l ) : d i s t r i b u t i o n ∗ r e a l ) : r e a l =
236 case d i s t of
237 D i s t r i bu t i onN i l => 0 .0
238 | Distr ibut ionCons ( po s i t i v e , xs ) =>
239 realAdd (
240 case r e a lL e s s ( po s i t i v e , 0 . 0 ) of
241 true => 0 .0
242 | f a l s e => (
243 case rea lEqua l ( po s i t i v e , 0 . 0 ) of
244 true => 0 .0
245 | f a l s e => partEntropy ( r ea lD iv id e ( po s i t i v e , t o t a l ) )
246 )
247 ,
248 entropy ( xs , t o t a l )
249 )
250
251 fun almostInfoGain ( da t aSp l i t s : d a t a s p l i t ) : r e a l =
252 case da t aSp l i t s of
253 DataSp l i tN i l => 0 .0
254 | DataSplitCons (x , xs ) =>
255 case x of
256 DataDis t r ibut ion (d , d i s t ) =>
257 case dist r ibut ionSum ( d i s t ) of
258 l en => realAdd ( r ea lMu l t i p l y ( len , entropy ( d i s t , l en ) ) , a lmostInfoGain (

xs ) )
259
260 fun getAtt r ibute Index ( ( s p l i tPo i n t ) : s p l i t p o i n t ) : i n t =
261 case s p l i tPo i n t of
262 NominalSpl i t ( index , l en ) => index
263 | Cont inuousSpl i t ( index , rea lVa lue ) => index
264
265 fun getAttr ibuteLength ( ( s p l i tPo i n t ) : s p l i t p o i n t ) : i n t =
266 case s p l i tPo i n t of
267 NominalSpl i t ( index , l en ) => l en
268 | Cont inuousSpl i t ( index , rea lVa lue ) => 2
269
270 fun sp l i tPo intEq ( ( sp1 , sp2 ) : s p l i t p o i n t ∗ s p l i t p o i n t ) : bool =
271 case sp1 of
272 Cont inuousSpl i t ( i1 , r1 ) => (
273 case sp2 of
274 NominalSpl it ( i2 , n l2 ) => f a l s e
275 | Cont inuousSpl i t ( i2 , r2 ) => (
276 case i 1 = i2 of
277 true => rea lEqua l ( r1 , r2 )
278 | f a l s e => f a l s e )
279 )
280 | NominalSpl i t ( i1 , n l1 ) => (
281 case sp2 of
282 NominalSpl it ( i2 , n l2 ) =>
283 ( case i 1 = i2 of
284 true => nl1 = nl2
285 | f a l s e => f a l s e
286 )
287 | Cont inuousSpl i t ( i2 , r2 ) => f a l s e
288 )
289
290 fun g e tSp l i tPo i n t s ( ( sp l i tPo in t , s p l i tPo i n t s , d) : s p l i t p o i n t ∗ s p l i t p o i n t l i s t ∗ data ) :

s p l i t p o i n t l i s t =
291 case s p l i t P o i n t s of
292 Sp l i tPo i n tL i s tN i l => Sp l i tPo i n tL i s tN i l
293 | Sp l i tPo intL i s tCons (x , xs ) =>
294 case sp l i tPo intEq (x , s p l i tPo i n t ) of
295 true => g e tSp l i tPo i n t s ( sp l i tPo in t , xs , d)
296 | f a l s e => Sp l i tPo intL i s tCons (x , g e tSp l i tPo i n t s ( sp l i tPo in t , xs , d) )
297
298 fun sp l i tPo in tL i s tToDataSe t In fo ( ( s p l i tPo i n tL i s t , c la s sLength ) : s p l i t p o i n t l i s t ∗ i n t ) :
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d a t a s e t i n f o =
299 l et
300 fun he lpe r ( ( sps , i ) : s p l i t p o i n t l i s t ∗ i n t ) : i n t uncheckedArray =
301 case sps of
302 Sp l i tPo i n tL i s tN i l => uncheckedArray ( i , ˜1)
303 | Sp l i tPo intL i s tCons (x , xs ) => uncheckedArrayUpdate ( he lpe r ( xs , i + 1) , i ,

getAttr ibuteLength x )
304 in
305 DataSetInfo ( he lpe r ( s p l i tPo i n tL i s t , 0) , c la s sLength )
306 end
307
308 fun getSpl itPointIndexWithAssumptions ( ( sp l i tPo in t , i n s t ) : s p l i t p o i n t ∗ i n s t ance ) : i n t =
309 case i n s t of
310 In s tanceN i l => raise D1
311 | InstanceCons (x , xs ) =>
312 case s p l i tPo i n t of
313 NominalSpl i t ( a t t r ibute Index , nominalList ) => (
314 case x of
315 Nominal ( value ) => value
316 | Continuous ( value ) => raise D1)
317 | Cont inuousSpl i t ( a t t r ibute Index , sp l i tVa lu e ) => (
318 case x of
319 Nominal ( value ) => raise D1
320 | Continuous ( value ) =>
321
322 case value < sp l i tVa lu e of
323 true => 0
324 | f a l s e => 1)
325
326 fun s p l i t ( ( dInfo , fu l lData , d , s p l i tPo i n t ) : d a t a s e t i n f o ∗ data ∗ data ∗ s p l i t p o i n t ) :

d a t a s p l i t =
327 l et
328 fun he lpe r ( ( sp l i tPo in t , dInfo , fu l lData , d , attv , fu l lDataLe f t , fu l lDataRight ,

dataRight ) :
329 s p l i t p o i n t ∗ d a t a s e t i n f o ∗ data ∗ data ∗ i n t ∗ data ∗ data ∗ data ) : d a t a s p l i t

=
330
331 case d of
332 DataNil => (
333 case attv < ( case s p l i tPo i n t of Cont inuousSpl i t (x , v ) => 2 | NominalSpl i t (x

, l en ) => l en ) of
334 true =>
335 DataSplitCons (
336 DataDis t r ibut ion (
337 fu l lDataLe f t ,
338 g e tD i s t r i bu t i on ( dInfo , f u l lDa taLe f t ) ) ,
339 he lpe r ( sp l i tPo in t , dInfo , fu l lDataRight , dataRight , attv + 1 ,

DataNil , DataNil , DataNil ) )
340 | f a l s e => DataSp l i tN i l
341 )
342 | DataCons (x , xs ) =>
343 case f u l lData of
344 DataNil => raise D2
345 | DataCons ( fx , f x s ) =>
346 ( case x of
347 Tra in ingIns tance ( ins t , c l a s s ) =>
348 case attv = getSpl itPointIndexWithAssumptions ( sp l i tPo in t ,

i n s t ) of
349 true => he lpe r ( sp l i tPo in t , dInfo , fxs , xs , attv ,
350 DataCons ( fx , f u l lDa taLe f t ) , fu l lDataRight , dataRight )
351 | f a l s e => he lpe r ( sp l i tPo in t , dInfo , fxs , xs , attv ,
352 fu l lDataLe f t , DataCons ( fx , fu l lDataRight ) , DataCons (x ,

dataRight ) )
353 )
354 in
355 he lpe r ( sp l i tPo in t , dInfo , fu l lData , d , 0 , DataNil , DataNil , DataNil )
356 end
357
358 fun removeFi r s tAttr ibute (d : data ) : data =
359 case d of
360 DataNil => DataNil
361 | DataCons (x , xs ) =>
362 case x of
363 Tra in ingIns tance ( i , c ) =>
364 case i of
365 In s tanceN i l => raise D1
366 | InstanceCons ( at , a t s ) =>
367 DataCons (
368 Tra in ingIns tance ( ats , c ) ,
369 removeFi r s tAttr ibute ( xs ) )
370
371 fun findMax ( ( sp l i tPo i n t s , dInfo , f u l lData ) : s p l i t p o i n t l i s t ∗ d a t a s e t i n f o ∗ data ) :

s p l i t p o i n t ∗ r e a l ∗ d a t a s p l i t =
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372 l et
373 fun he lpe r ( ( s p l i tPo i n t s , sp l i tPo in t Index , par t ia lData ) :
374 s p l i t p o i n t l i s t ∗ i n t ∗ data ) : s p l i t p o i n t ∗ r e a l ∗ d a t a s p l i t =
375 case s p l i t P o i n t s of
376 Sp l i tPo i n tL i s tN i l => raise D1
377 | Sp l i tPo intL i s tCons (x , xs ) =>
378 case ( case x of
379 NominalSpl i t ( aIndex , l ) => aIndex
380 | Cont inuousSpl i t ( aIndex , sp l i tVa lu e ) => aIndex ) = sp l i tPo in t Index of
381 true => (
382 case s p l i t ( dInfo , fu l lData , part ia lData , x ) of
383 da t aSp l i t s =>
384 case almostInfoGain ( da t aSp l i t s ) of
385 f i t n e s s =>
386 case xs of
387 Sp l i tPo i n tL i s tN i l => (x , f i t n e s s , d a t aSp l i t s )
388 | Sp l i tPo intL i s tCons (x ’ , xs ’ ) => (
389
390 case he lpe r ( xs , sp l i tPo in t Index , par t i a lData ) of
391 ( be s tSp l i tPo in t , be s tF i tne s s , be s tDataSp l i t s ) =>
392 case f i t n e s s < be s tF i tn e s s of
393 true => (x , f i t n e s s , d a t aSp l i t s )
394 | f a l s e => ( be s tSp l i tPo in t , be s tF i tne s s ,
395 be s tDataSp l i t s )
396 )
397 )
398
399 | f a l s e => he lpe r ( s p l i tPo i n t s , sp l i tPo in t Index + 1 , removeFi r s tAttr ibute (

par t i a lData ) )
400 in
401 case s p l i t P o i n t s of
402 Sp l i tPo i n tL i s tN i l => raise D1
403 | Sp l i tPo intL i s tCons (x , xs ) => he lpe r ( s p l i tPo i n t s , 0 , f u l lData )
404 end
405
406 fun makeTree ( ( s p l i tPo i n t s , minimumExamples , dInfo , d , d i s t , parentDist ) :
407 s p l i t p o i n t l i s t ∗ i n t ∗ d a t a s e t i n f o ∗ data ∗ d i s t r i b u t i o n ∗ d i s t r i b u t i o n ) : t r e e

=
408 l et
409 fun makeTreeList ( ( s p l i tPo i n t s , sp l i tPo in t , da taSp l i t s , parentDist ) :
410 s p l i t p o i n t l i s t ∗ s p l i t p o i n t ∗ d a t a s p l i t ∗ d i s t r i b u t i o n ) : t r e e l i s t =
411 case da t aSp l i t s of
412 DataSp l i tN i l => TreeL i s tN i l
413 | DataSplitCons (x , xs ) =>
414 case x of
415 DataDis t r ibut ion (d , d i s t ) =>
416 TreeListCons (
417 makeTree (
418 g e tSp l i tPo i n t s ( sp l i tPo in t , s p l i tPo i n t s , d) ,
419 minimumExamples ,
420 dInfo ,
421 d ,
422 d i s t ,
423 parentDist ) ,
424 makeTreeList (
425 sp l i tPo i n t s ,
426 sp l i tPo in t ,
427 xs ,
428 parentDist ) )
429 in
430
431 case i sSma l l (d , minimumExamples ) of
432 true => Leaf ( d i s t , major i tyClas s parentDist )
433 | f a l s e =>
434 case d of
435 DataNil => Leaf ( d i s t , major i tyClas s parentDist )
436 | DataCons (x , xs ) =>
437 case dataHasOnlyClass (d , getClassValue (x ) ) of
438 true => Leaf ( d i s t , getClassValue (x ) )
439 | f a l s e =>
440 case s p l i t P o i n t s of
441
442 Sp l i tPo i n tL i s tN i l => Leaf ( d i s t , major i tyClas s d i s t )
443 | Sp l i tPo intL i s tCons ( ignoreX , ignoreXs ) =>
444 case findMax ( sp l i tPo i n t s , dInfo , d) of
445 ( sp l i tPo in t , f i t n e s s , d a t aSp l i t s ) =>
446 DN(
447 sp l i tPo in t ,
448 d i s t ,
449 makeTreeList (
450 sp l i tPo i n t s ,
451 sp l i tPo in t ,
452 dataSp l i t s ,
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453 d i s t
454 ) )
455 end
456
457 fun createTree ( ( s p l i tPo i n t s , dInfo , d) : s p l i t p o i n t l i s t ∗ d a t a s e t i n f o ∗ data ) : t r e e =
458 case g e tD i s t r i bu t i on ( dInfo , d) of
459 d i s t => makeTree ( sp l i tPo i n t s , 0 , dInfo , d , d i s t , d i s t )
460 (∗ %}}} End id3 f u n c t i o n s ∗)
461
462 (∗ %{{{ Begin u t i l f u n c t i o n s ∗)
463 fun p r i n t l n ( s t r i n g ) = pr in t ( s t r i n g ˆ ”\n” )
464
465 fun p a r t i t i o n i f l =
466 l et
467 fun he lpe r ( i , n i l ) = ( n i l , n i l )
468 | he lpe r ( i , x : : xs ) = l et
469 val ( l l , r l ) = he lpe r ( i +1, xs )
470 in
471 i f f ( i , x ) then ( x : : l l , r l ) else ( l l , x : : r l )
472 end
473 in
474 he lpe r (0 , l )
475 end
476
477 fun vectorToLis t v = Vector . f o l d r ( fn (x , l ) => x : : l ) [ ] v
478
479 fun stringNTimes ( s , n) = Str ing . concat ( L i s t . t abu la t e (n , fn x => s ) )
480
481 fun rangeInt ( from , to , s tep ) : i n t l i s t =
482 i f from < to then
483 from : : rangeInt ( from + step , to , s tep )
484 else
485 n i l
486
487 fun arrayToList ( a ) = Array . f o l d r ( fn (x , l ) => x : : l ) n i l a
488
489 fun l i s t F o l d r i f i n i t l =
490 l et
491 fun he lpe r ( i , n i l ) = i n i t
492 | he lpe r ( i , x : : xs ) =
493 f ( i , x , he lpe r ( i +1, xs ) )
494 in
495 he lpe r (0 , l )
496 end
497
498 fun vectorRemoveIndex (v , i ) =
499 Vec to rS l i c e . concat ( [
500 Vec to rS l i c e . s l i c e (v , 0 , SOME i ) ,
501 Vec to rS l i c e . s l i c e (v , i + 1 , NONE)
502 ] )
503 (∗ %}}} end u t i l f u n c t i o n s ∗)
504
505 (∗ %{{{ Begin conve r s i on f u n c t i o n s ∗)
506 fun l i s tTo In s t an c e n i l = In s tanceN i l
507 | l i s tTo In s t an c e (x : : xs ) = InstanceCons (x , l i s tTo In s t an c e xs )
508
509 local
510 fun toData convertToInstance data =
511 l et
512
513 fun he lpe r n i l = DataNil
514 | he lpe r ( ( instance , c l a s sVa lue ) : : xs ) = DataCons (
515 Tra in ingIns tance (
516 convertToInstance instance ,
517 c l a s sVa lue ) ,
518 he lpe r ( xs ) )
519 in
520 he lpe r ( data )
521 end
522
523 fun vectorToInstance ( x : a t t r i b u t e v a l u e vector ) =
524 l i s tTo In s t an c e ( vectorToLis t x )
525 in
526 val l i s tAttr ibuteVectorClassValueToData = ( toData vectorToInstance )
527 end
528
529 fun l i s tToSp l i tP o i n tL i s t n i l = Sp l i tPo i n tL i s tN i l
530 | l i s tToSp l i tP o i n tL i s t ( x : : xs ) = Sp l i tPo intL i s tCons (x , l i s tToSp l i tP o i n tL i s t ( xs ) )
531
532 fun sp l i tPo in tDec r ea s e Index ( sp ) =
533 case sp of
534 NominalSpl i t ( i , numAttributeValues ) => NominalSpl i t ( i −1, numAttributeValues )
535 | Cont inuousSpl i t ( i , v ) => Cont inuousSpl i t ( i −1, v )
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536
537 fun sp l i tPo int sToDataSet In fo ( sp l i tPo i n t s , numClasses ) =
538 l et
539 val l en = L i s t . l ength ( s p l i t P o i n t s )
540 fun he lpe r ( a , n i l ) = a
541 | he lpe r ( a , sp : : sps ) =
542 case getAtt r ibute Index ( sp ) of
543 index =>
544 case index >= 0 andalso index < l en of
545 true => ( uncheckedArrayUpdate (a , index , getAttr ibuteLength ( sp ) ) ; he lpe r ( a , sps ) )
546 | f a l s e => raise D1
547
548 in
549 DataSetInfo ( he lpe r ( uncheckedArray ( len , ˜1) , s p l i t P o i n t s ) , numClasses )
550 end
551
552 fun di s tToCalcu la tedDis t ( d i s t ) =
553 Calcu la tedDis t (
554 major i tyClas s d i s t ,
555 numInstancesMajor ityClass d i s t ,
556 di s t r ibut ionSum d i s t
557 )
558
559 fun treeToCTree (
560 Leaf ( d i s t , c l a s sVa lue ) ) = CLeaf ( d i s tToCalcu la tedDis t ( d i s t ) , c l a s sVa lue )
561 | treeToCTree (
562 DN(
563 sp l i tPo in t ,
564 d i s t ,
565 ch i l d r en ) ) =
566 CDN(
567 sp l i tPo in t ,
568 d i s tToCalcu la tedDis t d i s t ,
569 treeLis tToCTreeLis t ch i l d r en
570 )
571 and t reeListToCTreeLis t ( TreeL i s tN i l ) = CTreeListNi l
572 | t reeListToCTreeLis t ( TreeListCons (x , xs ) ) =
573 CTreeListCons (
574 treeToCTree x ,
575 treeLis tToCTreeList ( xs )
576 )
577 (∗ %}}} End conve r s i on f u n c t i o n s ∗)
578
579 (∗ %{{{ Begin c l a s s i f i c a t i o n ∗)
580 fun sp l i tPo in t Index In s tanceVec to r ( ( sp l i tPo in t , i n s t ) : s p l i t p o i n t ∗ a t t r i b u t e v a l u e

vector ) : i n t =
581 case s p l i tPo i n t of
582 NominalSpl i t ( index , l en ) => (
583 case Vector . sub ( ins t , index ) of
584 Nominal ( value ) => value
585 | => raise D1
586 )
587 | Cont inuousSpl i t ( index , sp l i tVa lu e ) => (
588 case Vector . sub ( ins t , index ) of
589 Continuous ( value ) => i f value < sp l i tVa lu e then 0 else 1
590 | => raise D1
591 )
592
593 fun subTreeList ( ( index , t r e e L i s t ) : i n t ∗ t r e e l i s t ) : t r e e =
594 case t r e e L i s t of
595 TreeL i s tN i l => raise D2
596 | TreeListCons (x , xs ) =>
597 case 0 = index of
598 true => x
599 | f a l s e => subTreeList ( index − 1 , xs )
600
601 fun c l a s s i f y ( ( tr , i n s t ) : t r e e ∗ a t t r i b u t e v a l u e vector ) : c l a s s v a l u e =
602 case t r of
603 Leaf ( d i s t , c l a s sVa lue ) => c l a s sVa lue
604 | DN( sp l i tPo in t , d i s t , t r e e L i s t ) =>
605 c l a s s i f y (
606 subTreeList (
607 sp l i tPo in t Index In s tanceVec to r ( sp l i tPo in t , i n s t ) ,
608 t r e e L i s t ) ,
609 i n s t
610 )
611
612 fun subCTreeList ( ( index , t r e e L i s t ) : i n t ∗ c t r e e l i s t ) : c t r e e =
613 case t r e e L i s t of
614 CTreeListNi l => raise D2
615 | CTreeListCons (x , xs ) =>
616 case 0 = index of
617 true => x
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618 | f a l s e => subCTreeList ( index − 1 , xs )
619
620 fun c l a s s i f yCTree ( ( tr , i n s t ) : c t r e e ∗ a t t r i b u t e v a l u e vector ) : c l a s s v a l u e =
621 case t r of
622 CLeaf ( d i s t , c l a s sVa lue ) => c l a s sVa lue
623 | CDN( sp l i tPo in t , d i s t , t r e e L i s t ) =>
624 c l a s s i f yCTree (
625 subCTreeList (
626 sp l i tPo in t Index In s tanceVec to r ( sp l i tPo in t , i n s t ) , t r e e L i s t
627 ) ,
628 i n s t
629 )
630 (∗ %}}} End c l a s s i f i c a t i o n ∗)
631
632 (∗ %{{{ Begin random ∗)
633 fun getRandomReal ( ) =
634 Real . f romLargeInt (Word . toLargeInt (MLton .Random . rand ( ) ) ) / Math . pow (2 . 0 , Real . fromInt

(Word . wordSize ) )
635
636 fun getRandomRealX ( ) =
637 l et
638 val r = ( Real . fromLargeInt (Word . toLargeIntX (MLton .Random . rand ( ) ) ) ) / Math . pow (2 . 0 ,

Real . fromInt (Word . wordSize ) )
639 in
640 ( i f r < 0 .0 then 1 .0 + r else r )
641 end
642
643 fun getRandomGaussian ( ) =
644 l et
645 val x1 = 2.0 ∗ getRandomReal ( ) − 1 .0
646 val x2 = 2.0 ∗ getRandomReal ( ) − 1 .0
647 val w = x1 ∗ x1 + x2 ∗ x2
648 in
649 i f w >= 1.0 orelse Real .==(w, 0 . 0 ) then
650 getRandomGaussian ( )
651 else
652 x1 ∗ Math . sq r t ( ( ˜2 . 0 ∗ Math . ln ( w ) ) / w )
653 end
654
655 fun getRandomInt ( to ) =
656 Real . f l o o r ( Real . fromInt ( to ) ∗ getRandomReal ( ) )
657 (∗ %}}} End random ∗)
658
659 fun sumCorrectAndWrong c l a s s i f y ( t ree , t e s t I n s t an c e s ) =
660 l et
661 fun addCorrectOrWrong ( ( instance , c l a s sVa lue ) , ( co r r e c t , wrong ) )=
662 i f c l a s s i f y ( t ree , i n s tance ) = c la s sVa lue then ( c o r r e c t +1, wrong ) else ( co r r ec t ,

wrong+1)
663 in
664 L i s t . f o l d r addCorrectOrWrong (0 , 0 ) t e s t I n s t an c e s
665 end
666
667 (∗ %{{{ Begin s y n t h e t i c da ta ∗)
668 exception CustomE of s t r i n g
669
670 fun getTr ipplePermutat ions ( oneList , twoList , t h r e eL i s t ) =
671 L i s t . concat ( L i s t . concat (
672 L i s t .map
673 ( fn one =>
674 L i s t .map
675 ( fn two =>
676 L i s t .map
677 ( fn three =>
678 ( one , two , three )
679 )
680 th r e eL i s t
681 )
682 twoList
683 )
684 oneLi s t
685 ) )
686
687 fun shu f f l eAr ray ( a ) =
688 l et
689 val l en = Array . l ength a
690 in
691 Array . appi
692 ( fn ( index , ) =>
693 l et
694
695 val rIndex = index + getRandomInt ( l en − index )
696 val v = Array . sub (a , index )
697 val rv = Array . sub (a , rIndex )
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698 val = Array . update (a , index , rv )
699 val = Array . update (a , rIndex , v )
700 in
701 ( )
702 end)
703 a
704 end
705
706 fun attr ibuteIndexValuePermutat ions ( po s t f i x , s p l i t P o i n t s ) : ( i n t ∗ a t t r i b u t e v a l u e ) l i s t

l i s t =
707 l et
708 fun addPermutat ionsForSpl i tPoint ( sp , l ) =
709 l et
710 val ( at t r ib Index , at t r ibLength ) = ( case sp of
711 NominalSpl i t ( aIndex , aLength ) => ( aIndex ,

aLength )
712 | Cont inuousSpl i t ( aIndex , ) => ( aIndex , 2)
713 )
714 in
715 L i s t . concat ( L i s t . tabu la te ( attr ibLength ,
716 fn at t r ibVa lue => L i s t .map ( fn x => ( at t r ib Index , Nominal ( a t t r ibVa lue ) ) : : x ) l )

)
717 end
718 in
719 ( L i s t . f o l d r addPermutat ionsForSpl i tPoint [ p o s t f i x ] s p l i t P o i n t s )
720 end
721
722 fun permutations ( sp l i tPo i n t s , hand ledSpl i tPo ints , c lassValue , numAttributes ) : (

a t t r i b u t e v a l u e vector ∗ c l a s s v a l u e ) l i s t =
723 L i s t .map
724 ( fn permutation =>
725 l et
726 val a = Array . array ( numAttributes , Nominal (˜1) )
727 val = Li s t . app ( fn ( ai , av ) => Array . update (a , ai , av ) ) permutation
728 in
729 ( Array . vec tor a , Class ( c l a s sVa lue ) )
730 end
731 )
732 ( attr ibuteIndexValuePermutat ions ( handledSpl i tPo ints , s p l i t P o i n t s ) )
733
734 fun removeSpl i tPoint ( s p l i tPo i n t s , s p l i tPo i n t ) =
735 L i s t . f i l t e r ( fn x => not ( sp l i tPo intEq ( sp l i tPo in t , x ) ) ) s p l i t P o i n t s
736
737 fun l i s tToTra inTest ( data , f r a c t i on , s t r a t i f i e d ) =
738 l et
739 val = ( f r a c t i o n >= 0.0 andalso f r a c t i o n <= 1 .0 )
740 orelse raise CustomE(” f r a c t i o n must be between 0 and 1 .0 ” )
741 val breakPoint = Real . f l o o r ( f r a c t i o n ∗ Real . fromInt ( L i s t . l ength data ) )
742 in
743 l i s t F o l d r i
744 ( fn ( i , x , ( l l , l r ) ) => i f i < breakPoint then ( x : : l l , l r ) else ( l l , x : : l r ) )
745 ( [ ] , [ ] )
746 data
747 end
748
749 fun c r ea t eB ina rySp l i tPo in t s ( numAttributes ) =
750 L i s t . t abu la te ( numAttributes ,
751 fn i => NominalSpl i t ( i , 2)
752 )
753
754 fun intPermutat ions ( l eng ths ) =
755 l et
756 fun addToPermutations (x , l l ) =
757 L i s t . concat ( L i s t . tabu la te (x ,
758 fn value => L i s t .map ( fn l => value : : l ) l l ) )
759 in
760 ( L i s t . f o l d r addToPermutations [ [ ] ] l eng ths )
761 end
762
763 fun randomWeights ( l ength ) =
764 L i s t . t abu la t e ( length , fn x => getRandomReal ( ) − 0 . 5 )
765
766 fun randomFunctions (numWeights , numClasses ) =
767 L i s t . t abu la t e ( numClasses , fn x => randomWeights ( numWeights ) )
768
769 fun maxIndex ( va lues : ( r e a l ) l i s t ) = l et
770 val ( index , value ) =
771 l i s t F o l d r i ( fn ( ix , vx , ( iy , vy ) ) => i f vx >= vy then ( ix , vx ) else ( iy , vy ) ) (˜1 , ˜

Real . maxFinite ) va lues
772
773 val = ( index <> ˜1) orelse raise CustomE(” index i s ˜1 , and t h i s should not happen” )
774 in
775 index
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776 end
777
778 fun funct ionValue ( weights , a t t r i b u t e s ) =
779 L i s tPa i r . f o l d r ( fn (w, a , sum) => (w ∗ Real . fromInt ( a ) ) + sum) 0 .0 ( weights ,

a t t r i b u t e s )
780
781 fun sp l i tPo int sToLengthL i s t ( s p l i t P o i n t s ) = L i s t .map ( fn x => getAttr ibuteLength (x ) )

s p l i t P o i n t s
782
783 fun addBiasToAttr ibutes f unc t i on s = L i s t .map ( fn weights => 1 : : weights ) f unc t i on s
784
785 fun generateDataSet ( s p l i tPo i n t s , f unc t i on s : r e a l l i s t l i s t , withBias ) =
786 l et
787 val permutations = intPermutat ions ( sp l i tPo int sToLengthL i s t s p l i t P o i n t s )
788 val permutations = i f withBias then addBiasToAttr ibutes permutations else permutations
789
790 val a t t r i bu t eVa lu e sL i s t = L i s t .map ( fn permutation => L i s t .map ( fn x => Nominal ( x ) )

permutation ) permutations
791 val c l a s s e s = L i s t .map
792 ( fn a t t r i b u t e s =>
793 maxIndex (
794 L i s t .map (
795 fn weights => funct ionValue ( weights , a t t r i b u t e s ) )
796 func t i on s
797 )
798 )
799 permutations
800 in
801 L i s tPa i r .map ( fn ( a , v ) => ( Vector . f romList a , Class ( v ) ) ) ( a t t r i bu t eVa lue sL i s t ,

c l a s s e s )
802 end
803
804 fun l inesCreateInputOutput ( sp l i tPo i n t s , numClasses , withBias )=
805 l et
806 val numWeights = i f withBias then L i s t . l ength s p l i t P o i n t s + 1 else L i s t . l ength

s p l i t P o i n t s
807 val f unc t i on s = randomFunctions (numWeights , numClasses )
808 val data = generateDataSet ( sp l i tPo i n t s , funct ions , withBias )
809 in
810 ( funct ions , data )
811 end
812
813 fun removeSplitPointWithArranging ( s p l i t P o i n t s : s p l i t p o i n t l i s t , index ) =
814 l i s t F o l d r i
815 ( fn ( i , x , y ) =>
816 i f i > index then
817 sp l i tPo in tDec r ea s e Index (x ) : : y
818 else i f i = index then y
819 else x : : y
820 )
821 [ ] s p l i t P o i n t s
822
823 fun removeRandomAttribute ( sp l i tPo i n t s , data ) =
824 l et
825 val numAttributes = L i s t . l ength s p l i t P o i n t s
826 val index = getRandomInt ( numAttributes )
827 val s p l i t P o i n t s = removeSplitPointWithArranging ( sp l i tPo i n t s , index )
828 val = ( numAttributes = ( L i s t . l ength s p l i t P o i n t s + 1) ) orelse
829 raise CustomE(”Did not remove a t t r i bu t e ” )
830 val data = L i s t .map ( fn (v , c ) => ( vectorRemoveIndex (v , index ) , c ) ) data
831
832 in
833 ( sp l i tPo i n t s , data )
834 end
835
836 fun removeNRandomAttributes ( s p l i tPo i n t s , data , n) =
837 L i s t . f o l d r
838 ( fn ( , ( s p l i tPo i n t s , data ) ) =>
839
840 removeRandomAttribute ( s p l i tPo i n t s , data )
841 )
842 ( sp l i tPo i n t s , data )
843 ( L i s t . t abu la t e (n , fn x => x ) )
844
845 fun manipulateDataSetWithTrain (
846 ( sp l i tPo i n t s ,
847 data , numClasses ) ,
848 ( amountTraining ,
849 amountOfTrainingToTraining ,
850 numAttributesToRemove ) ) =
851 l et
852 val t e s tL im i t = 3000
853 val ( s p l i tPo i n t s , data ) = removeNRandomAttributes ( s p l i tPo i n t s , data ,
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numAttributesToRemove )
854
855 val ( t ra in , t e s t ) = l i s tToTra inTest ( data , amountTraining , f a l s e )
856
857 val t r a i n = L i s t . take ( t ra in , Real . f l o o r ( Real . fromInt ( L i s t . l ength t r a i n ) ∗

amountOfTrainingToTraining ) )
858 val t e s t = scramble t e s t
859 val t e s t = i f L i s t . l ength t e s t > t e s tL im i t then L i s t . take ( te s t , t e s tL im i t ) else t e s t
860
861 val dInfo = sp l i tPo int sToDataSet In fo ( sp l i tPo i n t s , numClasses )
862
863 val t t r e e = createTree ( l i s tToSp l i tP o i n tL i s t s p l i tPo i n t s , dInfo , (

l i s tAttr ibuteVectorClassValueToData t r a i n ) )
864
865 val ( trainC , trainW ) = sumCorrectAndWrong c l a s s i f y ( t t r e e , t r a i n )
866 val t r a i n S i z e = L i s t . l ength t r a i n
867 val ( testC , testW ) = sumCorrectAndWrong c l a s s i f y ( t t r e e , t e s t )
868 val t e s t S i z e = L i s t . l ength t e s t
869 val input = t t r e e
870 val output = ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t ra in , t e s t )
871 in
872 ( input , output )
873 end
874
875 fun manipulateDataSet ( args ) =
876 case manipulateDataSetWithTrain ( args ) of
877 ( input , ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t ra in , t e s t ) ) =>
878 ( input , ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t e s t ) )
879
880 fun createAndManipulateDataset
881 createDataSet
882 manipulateDataSet
883 manipulat ionArgsList
884 createNewModelEachTime
885 numModels =
886 L i s t . tabu la t e (numModels ,
887 ( fn x =>
888 l et
889 val dataSetResul t = createDataSet ( )
890 in
891 L i s t .map
892 ( fn manipulationArgs =>
893 l et
894 val dataSetResul t = i f createNewModelEachTime then createDataSet ( ) else

dataSetResul t
895 in
896 manipulateDataSet ( dataSetResult , manipulationArgs )
897 end)
898 manipulat ionArgsList
899 end
900 ) )
901
902 fun c reateSyntet i c InputsOutputs
903 createDataSet
904 manipulateDataSet
905 modelArgsList
906 manipulat ionArgsList
907 numModels =
908 L i s tPa i r . unzip ( L i s t . concat ( L i s t . concat (
909 L i s t .map
910 ( fn modelArgs =>
911 ( createAndManipulateDataset
912 ( createDataSet modelArgs )
913 manipulateDataSet
914 manipulat ionArgsList
915 f a l s e
916 numModels
917 )
918 )
919 modelArgsList ) ) )
920
921 fun genDataFromFunctionModel ( s p l i tPo i n t s , numClasses , ) =
922 #2( l inesCreateInputOutput ( sp l i tPo i n t s , numClasses , f a l s e ) )
923
924 fun genModel genData ( sp l i tPo i n t s , numClasses , depth ) ( ) =
925 l et
926 val withBias = true
927 val ( data ) = genData ( sp l i tPo i n t s , numClasses , depth )
928 val a = Array . f romList data
929 val = shu f f l eAr ray a
930 in
931 ( sp l i tPo i n t s , arrayToList a , numClasses )
932 end
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933
934 fun manipulateDataSetWithCTree ( args ) =
935 case manipulateDataSetWithTrain ( args ) of
936 ( input , ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t ra in , t e s t ) ) =>
937 ( treeToCTree input , ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t e s t ) )
938
939 fun getDataSetArguments ( ) =
940 l et
941 val s p l i t P o i n t s L i s t = L i s t .map ( fn x => c r ea t eB ina rySp l i tPo in t s x )
942 [ 10 , 11 , 12 ]
943 val numClassesList = [ 2 ]
944 val depthList = [ ˜ 1 ]
945 in
946 getTr ipplePermutat ions ( s p l i tPo i n t sL i s t , numClassesList , depthList )
947 end
948
949 fun getManipulationArguments ( ) =
950 l et
951
952 val amountTrainingList = [ 0 . 5 ]
953 val amountOfTrainingToTrainingList = [ 0 . 2 , 0 . 25 , 0 . 3 , 0 . 3 5 ]
954
955 val numAttributeToRemoveList = rangeInt (0 , 5 , 1)
956 in
957 getTr ipplePermutat ions ( amountTrainingList , amountOfTrainingToTrainingList ,

numAttributeToRemoveList )
958 end
959
960 val createInputsOutputs
961 = ( createSyntet i c InputsOutputs
962 ( genModel genDataFromFunctionModel )
963 ( manipulateDataSetWithCTree )
964 ( getDataSetArguments ( ) )
965 ( getManipulationArguments ( ) )
966 )
967 (∗ %}}} End s y n t h e t i c data ∗)
968
969 val num = 16
970 val ( Test inputs , Test outputs ) = ( createInputsOutputs 20)
971 val ( Va l ida t i on input s , Va l ida t i on output s ) = ( Test inputs , Test outputs )
972 val ( Inputs , Outputs ) = ( createInputsOutputs num)
973 val Al l output s = Vector . f romList ( Outputs @ Test outputs )
974
975 val Funs to use = [
976 ” f a l s e ” , ” t rue ” , ”=” ,
977 ” r e a lL e s s ” , ” realAdd” , ” r ea lSubt ra c t ” , ” r ea lMu l t i p l y ” ,
978 ” r ea lD iv id e ” , ” tanh” , ” to r ” , ” r cons tLes s ” , ” sq r t ” , ” ln ” ,
979 ”CTreeListNi l ” , ”CTreeListCons” ,
980 ”CLeaf” , ”CDN” ,
981 ” Calcu la tedDis t ”
982 ]
983
984 val Re j e c t fun s = [ ]
985 fun r e s t o r e t r an s f o rm D = D
986
987 structure Grade : GRADE =
988 struct
989
990 type grade = unit
991 val zero = ( )
992 val op+ = fn ( , ) => ( )
993 val comparisons = [ fn => EQUAL ]
994 val t oS t r ing = fn => ””
995 val f romStr ing = fn => SOME()
996
997 val pack = fn => ””
998 val unpack = fn =>()
999

1000 val po s t p r o c e s s = fn => ( )
1001
1002 val toRealOpt = NONE
1003
1004 end
1005
1006 val Abstrac t types = [ ” s p l i t p o i n t ” ]
1007
1008 val sumCAndW = sumCorrectAndWrong c l a s s i f yCTree
1009
1010 fun output eva l fun ( I : int , , prunedTree : c t r e e ) =
1011 l et
1012 val ( ( treeTrainC , treeTrainW , t r e eTra inS i z e ) ,
1013 ( treeTestC , treeTestW , t r e eTe s tS i z e ) ,
1014 testData ) = Vector . sub ( Al l outputs , I )
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1015
1016 val ( prunedTreeC , prunedTreeW) = sumCAndW( prunedTree , testData )
1017 val cImp = prunedTreeC − treeTestC
1018 val c = Real . f l o o r ( ( Real . f romInt ( cImp ) / Real . f romInt ( treeTestC ) ) ∗ 10000 .0)
1019 in
1020 {numCorrect = prunedTreeC , numWrong = prunedTreeW , grade = ( ) }
1021 end
1022 handle Ex =>
1023 {numCorrect = 0 , numWrong = 100000 , grade = ( ) }
1024
1025 fun ca lcDistEq ( Ca lcu la tedDis t ( X1 , Y1 , Z1 ) , Ca lcu latedDis t ( X2 , Y2 , Z2 ) ) =
1026 X1 = X2 andalso Real .==( Y1 , Y2 ) andalso Real .==( Z1 , Z2 )
1027
1028 fun s p l i t p o i n t e q ( NominalSpl i t X, NominalSpl it Y ) = X = Y
1029 fun s p l i t p o i n t e q ( Cont inuousSpl i t X, Cont inuousSpl i t Y ) =
1030 #1 X = #1 Y andalso Real .==( #2 X, #2 Y )
1031 | s p l i t p o i n t e q ( , ) = f a l s e
1032
1033 fun c t r e e e q ( CLeaf ( CalcDist1 , ClassVal1 ) , CLeaf ( CalcDist2 , ClassVal2 ) ) =
1034 ca lcDistEq ( CalcDist1 , CalcDist2 ) andalso ClassVal1 = ClassVal2
1035 | c t r e e e q ( CDN( P1 , Dist1 , Xs1 ) , CDN( P2 , Dist2 , Xs2 ) ) =
1036 s p l i t p o i n t e q ( P1 , P2 ) andalso
1037 ca lcDistEq ( Dist1 , Dist2 ) andalso
1038 c t r e e l i s t e q ( Xs1 , Xs2 )
1039 | c t r e e e q ( , ) = f a l s e
1040
1041 and c t r e e l i s t e q ( CTreeListNil , CTreeListNi l ) = true
1042 | c t r e e l i s t e q ( CTreeListCons ( X1 , Xs1 ) , CTreeListCons ( Y1 , Ys1 ) ) =
1043 c t r e e e q ( X1 , Y1 ) andalso c t r e e l i s t e q ( Xs1 , Ys1 )
1044
1045 val Max output genus card = 4
1046 val Max output genus complexity = 1 .2
1047
1048 val Max time l imit = 262144
1049 val Time l imi t base = 262144.0
1050 val Max syntact i c complex i ty = 500.0
1051
1052 val main range eq = c t r e e e q
1053
1054 val Number o f output at t r ibutes = 1
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1 fun f curTree =
2 l et
3 fun g173652 ( V173653 , V173654 ) =
4 r ea lD iv id e (
5 realAdd (
6 tanh (
7 tanh (
8 tanh (
9 r ea lD iv id e (

10 r ea lSubt ra c t ( V173654 , V173653 ) ,
11 V173654
12 )
13 )
14 )
15 ) ,
16 sq r t ( tanh ( tanh ( sq r t ( V173654 ) ) ) )
17 ) ,
18 tanh ( sq r t ( sq r t ( V173653 ) ) )
19 )
20 in
21 case curTree of
22 CLeaf (
23 V1ED3DC as
24 Calcu la tedDis t (
25 V1ED3DD as Class ( V1ED3DE ) ,
26 V1ED3DF,
27 V1ED3E0
28 ) ,
29 V1ED3E1 as Class ( V1ED3E2 )
30 ) =>
31
32
33 ( r ea lMu l t i p l y ( V1ED3E0 , g173652 ( V1ED3DF, V1ED3E0 ) ) ,
34 curTree
35 )
36 | CDN(
37 V1ED3E7 ,
38 V1ED3E8 as
39 Calcu la tedDis t (
40 V1ED3E9 as Class ( V1ED3EA ) ,
41 V1ED3EB,
42 V1ED3EC
43 ) ,
44 V1ED3ED
45 ) =>
46 case
47 l et
48 fun g15001C3 V15001C4 =
49 case V15001C4 of
50 CTreeListNi l =>
51 (
52 tor ( r cons t ( 0 , 0 . 25 , 0.40268806668952906 ) ) ,
53 CTreeListNi l

119
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54 )
55 | CTreeListCons ( V15001C5 , V15001C6 ) =>
56 case f ( V15001C5 ) of
57 V15001C7 as ( V15001C8 , V15001C9 ) =>
58 case g15001C3 ( V15001C6 ) of
59 V15001CA as ( V15001CB , V15001CC ) =>
60 (
61 realAdd ( V15001C8 , V15001CB ) ,
62 CTreeListCons ( V15001C9 , V15001CC )
63 )
64 in
65 g15001C3 ( V1ED3ED )
66 end of
67 V15001CD as ( V15001CE , V15001CF ) =>
68 case
69 r e a lL e s s (
70 r ea lD iv id e ( V15001CE , V1ED3EC ) ,
71 g173652 ( V1ED3EB, V1ED3EC )
72 ) of
73 true => ( V15001CE , CDN( V1ED3E7 , V1ED3E8 , V15001CF ) )
74 | f a l s e => f ( CLeaf ( V1ED3E8 , V1ED3E9 ) )
75 end



Appendix F

Pruning Specification 2

The second pruning specification is similar to the first pruning specification,
and major parts of both specifications are identical. Thus, to save space,
some of these parts are replaced with [snip...snip].

1 fun r cons tLe s s ( ( X, C ) : r e a l ∗ r cons t ) : bool =
2 r e a lL e s s ( X, to r C )
3
4 fun l og2 ( value : r e a l ) : r e a l =
5 r ea lD iv id e ( log10 ( value ) , log10 ( 2 . 0 ) )
6
7 datatype c l a s s v a l u e = Class of i n t
8 datatype a t t r i b u t e v a l u e = Nominal of i n t | Continuous of r e a l
9 datatype s p l i t p o i n t = NominalSpl i t of i n t ∗ i n t | Cont inuousSpl i t of i n t ∗ r e a l

10 datatype c a l c u l a t e d d i s t r i b u t i o n = Calcu la tedDis t of c l a s s v a l u e ∗ r e a l ∗ r e a l ∗ r e a l
11 datatype c t r e e = CLeaf of c a l c u l a t e d d i s t r i b u t i o n
12 | CDN of s p l i t p o i n t ∗ c a l c u l a t e d d i s t r i b u t i o n ∗ c t r e e l i s t
13 and c t r e e l i s t = CTreeListNi l | CTreeListCons of c t r e e ∗ c t r e e l i s t
14
15
16 fun f ( curTree : c t r e e ) : ( r e a l ∗ c t r e e ) =
17 l et
18 fun er rorEst imate ( ( sc , sn , sN) : r e a l ∗ r e a l ∗ r e a l ) : r e a l =
19 case sn ∗ to r ( r cons t (0 , 10 . 0 , 100 .0 ) ) of
20 n =>
21 case (n −( sc ∗ to r ( r cons t (0 , 0 . 2 , 2 . 0 ) ) ∗ n) ) of
22 e =>
23 case e < to r ( r cons t (0 , 0 . 1 , 1 . 0 ) ) of
24 true =>
25 ( case n ∗
26 (
27 tor ( r cons t (0 , 0 . 1 , 1 . 0 ) )
28 − pow( tor ( r cons t (0 , 0 .025 , 0 . 25 ) ) , to r ( r cons t (0 , 0 . 1 , 1 . 0 ) ) / n)
29 ) of
30 base =>
31 case to r ( r cons t (0 , 0 . 01 , 0 . 0 ) ) < e of
32 true => base + ( e ∗ ( e r rorEst imate ( ( n−to r ( r cons t (0 , 0 . 1 ,

1 .000000001) ) ) /( to r ( r cons t (0 , 0 . 2 , 2 . 0 ) ) ∗ n) , sn , sN) ) − base
)

33 | f a l s e => base
34 )
35 | f a l s e =>
36 case n < e + tor ( r cons t (0 , 0 . 05 , 0 . 5 ) ) of
37 true => (
38 case to r ( r cons t (0 , 0 . 01 , 0 . 0 ) ) < n − e of
39 true => n−e
40 | f a l s e => to r ( r cons t (0 , 0 . 01 , 0 . 0 ) )
41 )
42 | f a l s e =>
43 case ( e + tor ( r cons t (0 , 0 . 05 , 0 . 5 ) ) ) / n of
44 errorRate =>
45 case to r ( r cons t (0 , 0 .111 , 0 .674489751129221500) ) of
46 z =>
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47 case ( er rorRate + ( z ∗ z ) / ( to r ( r cons t (0 , 0 . 2 , 2 . 0 ) ) ∗ n) +
48 z ∗ sq r t ( ( er rorRate / n) −
49 ( errorRate ∗ errorRate / n) +
50 ( z ∗ z / ( to r ( r cons t (0 , 0 . 4 , 4 . 0 ) ) ∗ n ∗ n) ) ) ) /
51 ( tor ( r cons t (0 , 0 . 1 , 1 . 0 ) ) + ( z ∗ z ) / n)
52 of r => ( ( r ∗ n) − e )
53
54 in
55 l et
56 fun pruneCTreeList ( t r e e L i s t : c t r e e l i s t ) : ( r e a l ∗ c t r e e l i s t ) =
57 case t r e e L i s t of
58 CTreeListNi l => ( to r ( r cons t ( 0 , 0 . 01 , 0 .0 ) ) , CTreeListNi l )
59 | CTreeListCons (x , xs ) =>
60 case f ( x ) of
61 Pair2 as ( errorX , prunedX ) =>
62 case pruneCTreeList ( xs ) of
63 Pair3 as ( errorXs , prunedXs ) => ( realAdd ( errorX , errorXs ) ,
64 CTreeListCons ( prunedX , prunedXs ) )
65 in
66 case curTree of
67 CLeaf ( d i s t as Calcu latedDis t ( mClass as Class Val4 , scaledNumInstMajor ityClass ,

scaledNumAtNode , scaledTotalN ) ) =>
68 (
69 case to r ( r cons t (0 , 0 . 01 , 0 . 0 ) ) < scaledNumAtNode of
70 true =>
71 ( case scaledNumAtNode ∗ to r ( r cons t (0 , 10 . 0 , 100 .0 ) ) of
72 numAtNode =>
73 (numAtNode − ( sca ledNumInstMajor ityClass ∗ to r ( r cons t (0 , 0 . 2 , 2 . 0 )

) ∗ numAtNode) ) +
74 er rorEst imate ( scaledNumInstMajor ityClass , scaledNumAtNode ,

scaledTotalN ) )
75 | f a l s e => to r ( r cons t (0 , 0 . 01 , 0 . 0 ) ) ,
76 curTree
77 )
78 | CDN( sp l i tPo in t ,
79 d i s t ’ as Calcu latedDis t ( mClass ’ as Class Val4 ’ ,

scaledNumInstMajor ityClass ’ , scaledNumAtNode ’ , scaledTotalN ’ ) ,
80 ch i l d r en ) => (
81 case pruneCTreeList ( ch i l d r en ) of
82 Pair1 as ( ch i ldError , prunedChildren ) =>
83 case ( scaledNumAtNode ’ ∗ to r ( r cons t (0 , 10 . 0 , 100 .0 ) ) ) of
84 numAtNode ’ =>
85 case (numAtNode ’ − ( scaledNumInstMajor ityClass ’ ∗ to r ( r cons t (0 ,

0 . 2 , 2 . 0 ) ) ∗ numAtNode ’ ) ) + errorEst imate (
scaledNumInstMajor ityClass ’ , scaledNumAtNode ’ , scaledTotalN ’ )
of

86 e r r o r =>
87 case ( ( e r r o r − ( ch i l dEr ro r + tor ( r cons t (0 , 0 . 01 , 0 . 1 ) ) ) ) <

to r ( r cons t (0 , 0 .0000005 , 0 .000001) ) ) of
88 true =>
89 ( er ror , CLeaf ( d i s t ’ ) )
90 | f a l s e =>
91 ( ch i ldError , CDN( sp l i tPo in t , d i s t ’ , prunedChildren ) )
92 )
93 end
94 end
95
96 fun main ( curTree : c t r e e ) : c t r e e =
97 case f ( curTree ) of
98 ( er ror , prunedTree ) => prunedTree
99

100 %%
101 datatype d a t a s e t i n f o = DataSetInfo of i n t uncheckedArray ∗ i n t
102 datatype i n s t ance = Ins tanceN i l | InstanceCons of a t t r i b u t e v a l u e ∗ i n s t ance
103 datatype t r a i n i n g i n s t a n c e = Tra in ingIns tance of ( i n s tance ∗ c l a s s v a l u e )
104 datatype data = DataNil | DataCons of t r a i n i n g i n s t a n c e ∗ data
105 datatype d i s t r i b u t i o n = Di s t r i bu t i onN i l | Distr ibut ionCons of r e a l ∗ d i s t r i b u t i o n
106 datatype da t a d i s t r i b u t i o n = DataDis t r ibut ion of data ∗ d i s t r i b u t i o n
107 datatype d a t a s p l i t = DataSp l i tN i l | DataSplitCons of da t a d i s t r i b u t i o n ∗ d a t a s p l i t
108 datatype s p l i t p o i n t l i s t = Sp l i tPo i n tL i s tN i l | Sp l i tPo intL i s tCons of s p l i t p o i n t ∗

s p l i t p o i n t l i s t
109 datatype t r e e =
110 Leaf of d i s t r i b u t i o n ∗ c l a s s v a l u e |
111 DN of s p l i t p o i n t ∗ d i s t r i b u t i o n ∗ t r e e l i s t
112 and t r e e l i s t = TreeL i s tN i l | TreeListCons of t r e e ∗ t r e e l i s t
113
114 (∗ %{{{ Begin id3 ∗)
115 [ sn ip . . . sn ip ]
116 (∗ %}}} End id3 f u n c t i o n s ∗)
117
118 (∗ %{{{ Begin u t i l f u n c t i o n s ∗)
119 [ sn ip . . . sn ip ]
120 (∗ %}}} end u t i l f u n c t i o n s ∗)
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121
122 (∗ %{{{ Begin conve r s i on f u n c t i o n s ∗)
123 fun l i s tTo In s t an c e n i l = In s tanceN i l
124 | l i s tTo In s t an c e (x : : xs ) = InstanceCons (x , l i s tTo In s t an c e xs )
125
126 local
127 fun toData convertToInstance data =
128 l et
129
130 fun he lpe r n i l = DataNil
131 | he lpe r ( ( instance , c l a s sVa lue ) : : xs ) = DataCons (
132 Tra in ingIns tance (
133 convertToInstance instance ,
134 c l a s sVa lue ) ,
135 he lpe r ( xs ) )
136 in
137 he lpe r ( data )
138 end
139
140 fun vectorToInstance ( x : a t t r i b u t e v a l u e vector ) =
141 l i s tTo In s t an c e ( vectorToLis t x )
142 in
143 val l i s tAttr ibuteVectorClassValueToData = ( toData vectorToInstance )
144 end
145
146 fun l i s tToSp l i tP o i n tL i s t n i l = Sp l i tPo i n tL i s tN i l
147 | l i s tToSp l i tP o i n tL i s t ( x : : xs ) = Sp l i tPo intL i s tCons (x , l i s tToSp l i tP o i n tL i s t ( xs ) )
148
149 fun sp l i tPo in tDec r ea s e Index ( sp ) =
150 case sp of
151 NominalSpl i t ( i , numAttributeValues ) => NominalSpl i t ( i −1, numAttributeValues )
152 | Cont inuousSpl i t ( i , v ) => Cont inuousSpl i t ( i −1, v )
153
154 fun sp l i tPo int sToDataSet In fo ( sp l i tPo i n t s , numClasses ) =
155 l et
156 val l en = L i s t . l ength ( s p l i t P o i n t s )
157 fun he lpe r ( a , n i l ) = a
158 | he lpe r ( a , sp : : sps ) =
159 case getAtt r ibute Index ( sp ) of
160 index =>
161 case index >= 0 andalso index < l en of
162 true => ( uncheckedArrayUpdate (a , index , getAttr ibuteLength ( sp ) ) ; he lpe r ( a , sps ) )
163 | f a l s e => raise D1
164
165 in
166 DataSetInfo ( he lpe r ( uncheckedArray ( len , ˜1) , s p l i t P o i n t s ) , numClasses )
167 end
168
169 fun c r ea t eSca l edCa l cu l a t edDi s t ( c l , c , n , N) =
170 i f n <= 0.0 orelse N <= 0.0 then
171 Calcu la tedDis t ( c l , 0 . 0 , 0 . 0 , 0 . 0 )
172 else
173 l et
174 val sc = c / ( n ∗ 2 . 0 )
175 val sn = n / 100 .0
176 val sN = (5 . 0 ∗ n) / N
177 in
178 Calcu la tedDis t ( c l , sc , sn , sN)
179 end
180
181 fun s c a l eCa l cu l a t edD i s t ( Ca lcu la tedDis t ( c l , c , n , N) ) =
182 c r ea t eSca l edCa l cu l a t edDi s t ( c l , c , n , N)
183
184 fun scaleCTree ( CLeaf ( d i s t ) ) = CLeaf ( s c a l eCa l cu l a t edD i s t ( d i s t ) )
185 | scaleCTree (CDN( sp , d i s t , ch i l d r en ) ) = CDN( sp , s c a l eCa l cu l a t edD i s t ( d i s t ) ,

s ca l eCTreeL i s t ( ch i l d r en ) )
186 and
187 sca l eCTreeL i s t ( CTreeListNi l ) = CTreeListNi l
188 | s ca l eCTreeL i s t ( CTreeListCons (x , xs ) ) = CTreeListCons ( scaleCTree (x ) , s ca l eCTreeL i s t xs )
189
190 fun di s tToCalcu la tedDis t ( someClass , totalNum , d i s t ) =
191 l et
192 exception CustomE of s t r i n g
193
194 fun emptyDist ( D i s t r i bu t i onN i l ) = true
195 | emptyDist ( Dis t r ibut ionCons (x , xs ) ) = Real .==(x , 0 . 0 ) andalso emptyDist ( xs )
196
197 val major i tyClas s = major i tyClas s d i s t
198 val numMajority = numInstancesMajor ityClass d i s t
199 val numAtNode = dist r ibut ionSum d i s t
200 val RTotalNum = Real . fromInt ( totalNum )
201
202 val empty = emptyDist d i s t



APPENDIX F. PRUNING SPECIFICATION 2 124

203 val major i tyClas s = (
204 case someClass of
205 SOME( actua lMajo r i tyC la s s ) =>
206 i f empty then
207 ac tua lMajo r i tyC la s s
208 else
209 i f ac tua lMajo r i tyC la s s = major i tyClas s then
210 major i tyClas s
211 else
212 raise CustomE(”Mismatch between the c l a s s o f the node and the majortyClass

accord ing to the d i s t r i b u t i o n ” )
213 | NONE => i f empty then raise CustomE(”Should not be empty in t h i s case ” ) else

major i tyClas s
214 )
215 in
216 c r ea t eSca l edCa l cu l a t edDi s t (
217 major i tyClass ,
218 numMajority ,
219 numAtNode ,
220 RTotalNum)
221 end
222 fun treeToCTree (
223 t r a i nS i z e ,
224 Leaf ( d i s t , c l a s sVa lue ) ) =
225 CLeaf ( d i s tToCalcu la tedDis t (SOME classValue , t r a i nS i z e , d i s t ) )
226 | treeToCTree (
227 t r a i nS i z e ,
228 DN(
229 sp l i tPo in t ,
230 d i s t ,
231 ch i l d r en ) ) =
232 CDN(
233 sp l i tPo in t ,
234 d i s tToCalcu la tedDis t (NONE, t r a i nS i z e , d i s t ) ,
235 treeLis tToCTreeLis t ( t r a i nS i z e , ch i l d r en )
236 )
237 and t reeListToCTreeLis t ( t r a i nS i z e , TreeL i s tN i l ) = CTreeListNi l
238 | t reeListToCTreeLis t ( t r a i nS i z e , TreeListCons (x , xs ) ) =
239 CTreeListCons (
240 treeToCTree ( t r a i nS i z e , x ) ,
241 treeLis tToCTreeList ( t r a i nS i z e , xs )
242 )
243 (∗ %}}} End conve r s i on f u n c t i o n s ∗)
244
245 (∗ %{{{ Begin c l a s s i f i c a t i o n ∗)
246 fun sp l i tPo in t Index In s tanceVec to r ( ( sp l i tPo in t , i n s t ) : s p l i t p o i n t ∗ a t t r i b u t e v a l u e

vector ) : i n t =
247 case s p l i tPo i n t of
248 NominalSpl i t ( index , l en ) => (
249 case Vector . sub ( ins t , index ) of
250 Nominal ( value ) => value
251 | => raise D1
252 )
253 | Cont inuousSpl i t ( index , sp l i tVa lu e ) => (
254 case Vector . sub ( ins t , index ) of
255 Continuous ( value ) => i f value < sp l i tVa lu e then 0 else 1
256 | => raise D1
257 )
258
259 fun subTreeList ( ( index , t r e e L i s t ) : i n t ∗ t r e e l i s t ) : t r e e =
260 case t r e e L i s t of
261 TreeL i s tN i l => raise D2
262 | TreeListCons (x , xs ) =>
263 case 0 = index of
264 true => x
265 | f a l s e => subTreeList ( index − 1 , xs )
266
267 fun c l a s s i f y ( ( tr , i n s t ) : t r e e ∗ a t t r i b u t e v a l u e vector ) : c l a s s v a l u e =
268 case t r of
269 Leaf ( d i s t , c l a s sVa lue ) => c l a s sVa lue
270 | DN( sp l i tPo in t , d i s t , t r e e L i s t ) =>
271 c l a s s i f y (
272 subTreeList (
273 sp l i tPo in t Index In s tanceVec to r ( sp l i tPo in t , i n s t ) ,
274 t r e e L i s t ) ,
275 i n s t
276 )
277
278 fun subCTreeList ( ( index , t r e e L i s t ) : i n t ∗ c t r e e l i s t ) : c t r e e =
279 case t r e e L i s t of
280 CTreeListNi l => raise D2
281 | CTreeListCons (x , xs ) =>
282 case 0 = index of
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283 true => x
284 | f a l s e => subCTreeList ( index − 1 , xs )
285
286 fun c l a s s i f yCTree ( ( tr , i n s t ) : c t r e e ∗ a t t r i b u t e v a l u e vector ) : c l a s s v a l u e =
287 case t r of
288 CLeaf ( Ca lcu la tedDis t ( c lassValue , , , ) ) => c l a s sVa lue
289 | CDN( sp l i tPo in t , d i s t , t r e e L i s t ) =>
290 c l a s s i f yCTree (
291 subCTreeList (
292 sp l i tPo in t Index In s tanceVec to r ( sp l i tPo in t , i n s t ) , t r e e L i s t
293 ) ,
294 i n s t
295 )
296 (∗ %}}} End c l a s s i f i c a t i o n ∗)
297
298 (∗ %{{{ Begin random ∗)
299 [ sn ip . . sn ip ]
300 (∗ %}}} End random ∗)
301
302 fun sumCorrectAndWrong c l a s s i f y ( t ree , t e s t I n s t an c e s ) =
303 l et
304 fun addCorrectOrWrong ( ( instance , c l a s sVa lue ) , ( co r r e c t , wrong ) )=
305 i f c l a s s i f y ( t ree , i n s tance ) = c la s sVa lue then ( c o r r e c t +1, wrong ) else ( co r r ec t ,

wrong+1)
306 in
307 L i s t . f o l d r addCorrectOrWrong (0 , 0 ) t e s t I n s t an c e s
308 end
309
310 (∗ %{{{ Begin s y n t h e t i c da ta ∗)
311 exception CustomE of s t r i n g
312
313 fun getTr ipplePermutat ions ( oneList , twoList , t h r e eL i s t ) =
314 L i s t . concat ( L i s t . concat (
315 L i s t .map
316 ( fn one =>
317 L i s t .map
318 ( fn two =>
319 L i s t .map
320 ( fn three =>
321 ( one , two , three )
322 )
323 th r e eL i s t
324 )
325 twoList
326 )
327 oneLi s t
328 ) )
329
330 fun shu f f l eAr ray ( a ) =
331 l et
332 val l en = Array . l ength a
333 in
334 Array . appi
335 ( fn ( index , ) =>
336 l et
337
338 val rIndex = index + getRandomInt ( l en − index )
339 val v = Array . sub (a , index )
340 val rv = Array . sub (a , rIndex )
341 val = Array . update (a , index , rv )
342 val = Array . update (a , rIndex , v )
343 in
344 ( )
345 end)
346 a
347 end
348
349 fun attr ibuteIndexValuePermutat ions ( po s t f i x , s p l i t P o i n t s ) : ( i n t ∗ a t t r i b u t e v a l u e ) l i s t

l i s t =
350 l et
351 fun addPermutat ionsForSpl i tPoint ( sp , l ) =
352 l et
353 val ( at t r ib Index , at t r ibLength ) = ( case sp of
354 NominalSpl i t ( aIndex , aLength ) => ( aIndex ,

aLength )
355 | Cont inuousSpl i t ( aIndex , ) => ( aIndex , 2)
356 )
357 in
358 L i s t . concat ( L i s t . tabu la te ( attr ibLength ,
359 fn at t r ibVa lue => L i s t .map ( fn x => ( at t r ib Index , Nominal ( a t t r ibVa lue ) ) : : x ) l )

)
360 end
361 in
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362 ( L i s t . f o l d r addPermutat ionsForSpl i tPoint [ p o s t f i x ] s p l i t P o i n t s )
363 end
364
365 fun permutations ( sp l i tPo i n t s , hand ledSpl i tPo ints , c lassValue , numAttributes ) : (

a t t r i b u t e v a l u e vector ∗ c l a s s v a l u e ) l i s t =
366 L i s t .map
367 ( fn permutation =>
368 l et
369 val a = Array . array ( numAttributes , Nominal (˜1) )
370 val = Li s t . app ( fn ( ai , av ) => Array . update (a , ai , av ) ) permutation
371 in
372 ( Array . vec tor a , Class ( c l a s sVa lue ) )
373 end
374 )
375 ( attr ibuteIndexValuePermutat ions ( handledSpl i tPo ints , s p l i t P o i n t s ) )
376
377 fun removeSpl i tPoint ( s p l i tPo i n t s , s p l i tPo i n t ) =
378 L i s t . f i l t e r ( fn x => not ( sp l i tPo intEq ( sp l i tPo in t , x ) ) ) s p l i t P o i n t s
379
380 fun l i s tToTra inTest ( data , f r a c t i on , s t r a t i f i e d ) =
381 l et
382 val = ( f r a c t i o n >= 0.0 andalso f r a c t i o n <= 1 .0 )
383 orelse raise CustomE(” f r a c t i o n must be between 0 and 1 .0 ” )
384 val breakPoint = Real . f l o o r ( f r a c t i o n ∗ Real . fromInt ( L i s t . l ength data ) )
385 in
386 l i s t F o l d r i
387 ( fn ( i , x , ( l l , l r ) ) => i f i < breakPoint then ( x : : l l , l r ) else ( l l , x : : l r ) )
388 ( [ ] , [ ] )
389 data
390 end
391
392 fun c r ea t eB ina rySp l i tPo in t s ( numAttributes ) =
393 L i s t . t abu la te ( numAttributes ,
394 fn i => NominalSpl i t ( i , 2)
395 )
396
397 fun intPermutat ions ( l eng ths ) =
398 l et
399 fun addToPermutations (x , l l ) =
400 L i s t . concat ( L i s t . tabu la te (x ,
401 fn value => L i s t .map ( fn l => value : : l ) l l ) )
402 in
403 ( L i s t . f o l d r addToPermutations [ [ ] ] l eng ths )
404 end
405
406 fun randomWeights ( l ength ) =
407 L i s t . t abu la t e ( length , fn x => getRandomReal ( ) − 0 . 5 )
408
409
410 fun maxIndex ( va lues : ( r e a l ) l i s t ) = l et
411 val ( index , value ) =
412 l i s t F o l d r i ( fn ( ix , vx , ( iy , vy ) ) => i f vx >= vy then ( ix , vx ) else ( iy , vy ) ) (˜1 , ˜

Real . maxFinite ) va lues
413
414 val = ( index <> ˜1) orelse raise CustomE(” index i s ˜1 , and t h i s should not happen” )
415 in
416 index
417 end
418
419 fun l inearCombinat ion a t t r i b u t e s weights =
420 l et
421 val = Li s t . l ength ( weights ) = L i s t . l ength ( a t t r i b u t e s ) orelse raise CustomE(”Wefihts

and a t t r i b u t e s must have the same length ” )
422
423 in
424 L i s tPa i r . f o l d r ( fn (w, a , sum) => (w ∗ a ) + sum) 0 .0 ( weights , a t t r i b u t e s )
425 end
426
427
428 fun sp l i tPo int sToLengthL i s t ( s p l i t P o i n t s ) = L i s t .map ( fn x => getAttr ibuteLength (x ) )

s p l i t P o i n t s
429
430 fun addBiasToAttr ibutes f unc t i on s = L i s t .map ( fn weights => 1 : : weights ) f unc t i on s
431
432 fun multiLayerNetwork ( weightsToHiddenNodes , weightsToOutputNodes : r e a l l i s t l i s t ,

withBias ) a t t r i b u t e s =
433 l et
434 val a t t r i b u t e s = L i s t .map Real . fromInt a t t r i b u t e s
435 val hiddenValues = L i s t .map ( tanh o ( l inearCombinat ion a t t r i b u t e s ) )

weightsToHiddenNodes
436 val hiddenValues = i f withBias then 1 .0 : : hiddenValues else hiddenValues
437
438
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439 val = Li s t . l ength ( hiddenValues ) = L i s t . l ength ( L i s t . hd ( weightsToOutputNodes ) )
orelse raise CustomE(”Mismath between hiddenValues and the weights o f the output
nodes” )

440 val outputValues = L i s t .map ( l inearCombinat ion hiddenValues ) weightsToOutputNodes
441 in
442 maxIndex ( outputValues )
443 end
444
445 fun generateDataSetUsingEncoder encoder ( sp l i tPo i n t s , network : ( r e a l l i s t l i s t ∗ r e a l

l i s t l i s t ) , withBias ) =
446 l et
447 val permutations = intPermutat ions ( sp l i tPo int sToLengthL i s t s p l i t P o i n t s )
448
449 val a t t r i bu t eVa lu e sL i s t = L i s t .map ( fn permutation => L i s t .map ( fn x => Nominal ( x ) )

permutation ) permutations
450
451 val encodedPermutations = L i s t .map encoder permutations
452
453 val encodedPermutations = i f withBias then addBiasToAttr ibutes encodedPermutations

else encodedPermutations
454
455 val (hw, ow) = network
456 val c l a s s e s = L i s t .map ( multiLayerNetwork (hw, ow , withBias ) ) encodedPermutations
457
458 val numAttribs = L i s t . l ength s p l i t P o i n t s
459 val = Li s t . a l l ( fn a => ( L i s t . l ength a ) = numAttribs ) a t t r i bu t eVa lu e sL i s t
460 orelse raise CustomE(”wrong with genera t i on o f the data . Mismatch between

s p l i t p o i n t s and a t t r i b u t e s ” )
461 in
462 L i s tPa i r .map ( fn ( a , v ) => ( Vector . f romList a , Class ( v ) ) ) ( a t t r i bu t eVa lue sL i s t ,

c l a s s e s )
463 end
464
465
466 val sumInt = ( L i s t . f o l d r ( fn ( r , y ) => r + y ) 0)
467
468 fun b ina ryL i s t value =
469 l et
470 val = value >= 0 orelse raise CustomE(”The value must be p o s i t i v e ” )
471
472 val next = value div 2
473 val r e s t = value mod 2
474 in
475 i f next = 0 then
476 [ r e s t ]
477 else
478 ( b ina ryL i s t next ) @ [ r e s t ]
479 end
480
481
482 fun get IndicatorWidths s p l i t P o i n t s =
483 L i s t .map ( fn l => L i s t . l ength ( b ina ryL i s t ( l − 1) ) ) ( sp l i tPo int sToLengthL i s t

s p l i t P o i n t s )
484
485
486 fun numIndicatorNodes ( s p l i t P o i n t s ) =
487 sumInt (
488 get IndicatorWidths s p l i t P o i n t s
489 )
490
491
492
493 fun ind icatorEncoder s p l i t P o i n t s ( a t t r i bu t eVa lue s ) =
494 l et
495
496 val f ixedWidths = getIndicatorWidths ( s p l i t P o i n t s )
497
498
499
500 fun f ixedWidthBinaryList ( fixedWidth , value ) =
501 l et
502 val bns = b ina ryL i s t ( value )
503 val d i f f = fixedWidth − L i s t . l ength ( bns )
504 val = d i f f >= 0 orelse raise CustomE(”The a t t r i bu t e value i s too l a r g e when

compared to the s p l i t p o i n t ” )
505 in
506 ( L i s t . t abu la t e ( d i f f , fn => 0) ) @ bns
507 end
508
509 in
510 L i s t . concat ( L i s tPa i r .map f ixedWidthBinaryList ( f ixedWidths , a t t r i bu t eVa lue s ) )
511 end
512
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513
514
515 fun perturb ( W1 : rea l , W2 : r ea l , Lower : r ea l , Upper : r e a l ) : r e a l ∗ r e a l =
516 l et
517 val S = W1 + W2
518 val W = Lower + randReal ( ) ∗ ( Upper − Lower )
519 val W’ = S − W
520 val Eps = 1 .0 e˜9
521 fun ok X = Lower − Eps <= X andalso X <= Upper + Eps
522 in
523 i f ok W andalso ok W’ then
524 ( W, W’ )
525 else
526 perturb ( W1, W2, Lower , Upper )
527 end (∗ fun p e r t u r b ∗)
528
529
530 fun randomChanges ( Xs : r e a l l i s t , Lower : r ea l , Upper : r e a l ) : r e a l l i s t =
531 l et
532 val A = Array . f romList Xs
533 fun randIndex ( ) = randRange ( 0 , Array . l ength A − 1 )
534 fun g ( ) =
535 l et
536 val I = randIndex ( )
537 val K = randIndex ( )
538 in
539 i f I = K then g ( ) else
540 l et
541 val ( Wi, Wk ) =
542 perturb ( Array . sub ( A, I ) , Array . sub ( A, K ) , Lower , Upper )
543 in
544 Array . update ( A, K, Wi ) ;
545 Array . update ( A, I , Wk )
546 end
547 end
548 in
549 f o r ( 1 , Array . l ength A ∗ 10 , fn => g ( ) ) ;
550 a r r a y t o l i s t A
551 end
552
553
554
555 fun randomCustomWeights ( length , from , to ) =
556 L i s t . t abu la t e ( length , fn x => ( ( ( to − from ) ∗ getRandomReal ( ) ) + from ) )
557
558 fun randomNetworks ( numInputNodes , numHiddenNodes , numClasses , withBias ) =
559 l et
560 val numInputNodes = i f withBias then numInputNodes + 1 else numInputNodes
561 val Sigma = randReal ( ) ∗ 4 .0
562 val Limit = Sigma ∗ Math . sq r t 3 .0 / Math . sq r t ( r e a l numInputNodes )
563 val HiddenWeights =
564 randomCustomWeights ( numInputNodes , ˜Limit , Limit )
565 val OutputWeights =
566 randomCustomWeights (
567 i f withBias then numHiddenNodes + 1 else numHiddenNodes , ˜1 . 0 , 1 . 0 )
568 in
569 (
570 L i s t . t abu la te ( numHiddenNodes ,
571 fn x => randomChanges ( HiddenWeights , ˜Limit , Limit ) ) ,
572
573 L i s t . t abu la te ( numClasses ,
574 fn x => randomChanges ( OutputWeights , ˜1 . 0 , 1 .0 ) )
575 )
576 end
577
578 fun encodedLinesCreateInputOutput (numEncodedNodes , encoder ) ( s p l i tPo i n t s , numClasses ,

withBias )=
579 l et
580
581 val numNodes = numEncodedNodes ( s p l i t P o i n t s )
582
583 val numHiddenNodes = randRange (5 , 11)
584 fun g ( ) =
585 l et
586 val f unc t i on s = randomNetworks (numNodes , numHiddenNodes , numClasses , withBias )
587
588 val data = generateDataSetUsingEncoder encoder ( sp l i tPo i n t s , funct ions , withBias )
589 val Clas s e s = map( fn ( , Class I ) => I , data )
590 val Histogram = Array . array ( numClasses , 0 )
591 val ( ) = loop ( fn I =>
592 Array . update ( Histogram , I , Array . sub ( Histogram , I ) + 1 ) ,
593 Cla s s e s )
594 val Xs = map( rea l , a r r a y t o l i s t Histogram )
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595 val X = min( op<, Xs )
596 in
597 i f X < ( 1 .0 / r e a l numClasses / 5 .0 ) ∗ rea l sum Xs then g ( ) else (
598 p”\nHistogram = ” ; p r i n t i n t l i s t ( a r r a y t o l i s t Histogram ) ;
599 ( funct ions , data ) )
600 end (∗ fun g ( ) ∗)
601 in
602 g ( )
603 end
604
605 fun generalCreateInputOutput getModelAndData ( sp l i tPo i n t s , numClasses , amountTraining ,

s t r a t i f i e d )=
606 l et
607 val (model , data ) = getModelAndData ( numClasses , s p l i t P o i n t s )
608 val a = Array . f romList data
609 val = shu f f l eAr ray a
610 val ( t ra in , t e s t ) = l i s tToTra inTest ( arrayToList a , amountTraining , s t r a t i f i e d )
611 val dInfo = sp l i tPo int sToDataSet In fo ( sp l i tPo i n t s , numClasses )
612 in
613 (model , dInfo , t ra in , t e s t )
614 end
615
616 fun removeSplitPointWithArranging ( s p l i t P o i n t s : s p l i t p o i n t l i s t , index ) =
617 l i s t F o l d r i
618 ( fn ( i , x , y ) =>
619 i f i > index then
620 sp l i tPo in tDec r ea s e Index (x ) : : y
621 else i f i = index then y
622 else x : : y
623 )
624 [ ] s p l i t P o i n t s
625
626 fun removeRandomAttribute ( sp l i tPo i n t s , data ) =
627 l et
628 val numAttributes = L i s t . l ength s p l i t P o i n t s
629 val index = getRandomInt ( numAttributes )
630 val s p l i t P o i n t s = removeSplitPointWithArranging ( sp l i tPo i n t s , index )
631 val = ( numAttributes = ( L i s t . l ength s p l i t P o i n t s + 1) ) orelse
632 raise CustomE(”Did not remove a t t r i bu t e ” )
633 val data = L i s t .map ( fn (v , c ) => ( vectorRemoveIndex (v , index ) , c ) ) data
634
635 in
636 ( sp l i tPo i n t s , data )
637 end
638
639 fun removeNRandomAttributes ( s p l i tPo i n t s , data , n) =
640 L i s t . f o l d r
641 ( fn ( , ( s p l i tPo i n t s , data ) ) =>
642
643 removeRandomAttribute ( s p l i tPo i n t s , data )
644 )
645 ( sp l i tPo i n t s , data )
646 ( L i s t . t abu la t e (n , fn x => x ) )
647
648 fun manipulateDataSetWithTrain (
649 ( sp l i tPo i n t s ,
650 data , numClasses ) ,
651 ( amountTraining ,
652 amountOfTrainingToTraining ,
653 numAttributesToRemove ) ) =
654 l et
655 val t e s tL im i t = 3000
656 val ( s p l i tPo i n t s , data ) = removeNRandomAttributes ( s p l i tPo i n t s , data ,

numAttributesToRemove )
657
658 val ( t ra in , t e s t ) = l i s tToTra inTest ( data , amountTraining , f a l s e )
659
660 val t r a i n = L i s t . take ( t ra in , Real . f l o o r ( Real . fromInt ( L i s t . l ength t r a i n ) ∗

amountOfTrainingToTraining ) )
661 val t e s t = scramble t e s t
662 val t e s t = i f L i s t . l ength t e s t > t e s tL im i t then L i s t . take ( te s t , t e s tL im i t ) else t e s t
663
664 val dInfo = sp l i tPo int sToDataSet In fo ( sp l i tPo i n t s , numClasses )
665
666 val t t r e e = createTree ( l i s tToSp l i tP o i n tL i s t s p l i tPo i n t s , dInfo , (

l i s tAttr ibuteVectorClassValueToData t r a i n ) )
667
668 val ( trainC , trainW ) = sumCorrectAndWrong c l a s s i f y ( t t r e e , t r a i n )
669 val t r a i n S i z e = L i s t . l ength t r a i n
670 val ( testC , testW ) = sumCorrectAndWrong c l a s s i f y ( t t r e e , t e s t )
671 val t e s t S i z e = L i s t . l ength t e s t
672 val input = t t r e e
673 val output = ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t ra in , t e s t )
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674 in
675 ( input , output )
676 end
677
678 fun manipulateDataSet ( args ) =
679 case manipulateDataSetWithTrain ( args ) of
680 ( input , ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t ra in , t e s t ) ) =>
681 ( input , ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t e s t ) )
682
683 fun createAndManipulateDataset
684 createDataSet
685 manipulateDataSet
686 manipulat ionArgsList
687 createNewModelEachTime
688 numModels =
689 L i s t . tabu la t e (numModels ,
690 ( fn x =>
691 l et
692 val dataSetResul t = createDataSet ( )
693 in
694 L i s t .map
695 ( fn manipulationArgs =>
696 l et
697 val dataSetResul t = i f createNewModelEachTime then createDataSet ( ) else

dataSetResul t
698 in
699 manipulateDataSet ( dataSetResult , manipulationArgs )
700 end)
701 manipulat ionArgsList
702 end
703 ) )
704
705 fun c reateSyntet i c InputsOutputs
706 createDataSet
707 manipulateDataSet
708 modelArgsList
709 manipulat ionArgsList
710 numModels =
711 L i s tPa i r . unzip ( L i s t . concat ( L i s t . concat (
712 L i s t .map
713 ( fn modelArgs =>
714 ( createAndManipulateDataset
715 ( createDataSet modelArgs )
716 manipulateDataSet
717 manipulat ionArgsList
718 true (∗ remember to s e t t h i s to t r u e ∗)
719 numModels
720 )
721 )
722 modelArgsList ) ) )
723
724 fun genDataFromFunctionModel ( s p l i tPo i n t s , numClasses , ) =
725 #2(encodedLinesCreateInputOutput ( numIndicatorNodes , ind icatorEncoder s p l i t P o i n t s ) (

s p l i tPo i n t s , numClasses , t rue ) )
726
727 fun getRandomNumClasses maxNumClasses = ( getRandomInt (maxNumClasses − 1) ) + 2
728
729 fun genModel genData ( sp l i tPo i n t s , maxNumClasses , depth ) ( ) =
730 l et
731 val numClasses = getRandomNumClasses (maxNumClasses )
732 val ( data ) = genData ( sp l i tPo i n t s , numClasses , depth )
733 val a = Array . f romList data
734 val = shu f f l eAr ray a
735 in
736 ( sp l i tPo i n t s , arrayToList a , numClasses )
737 end
738
739 fun manipulateDataSetWithCTree ( args ) =
740 case manipulateDataSetWithTrain ( args ) of
741 ( input , ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW , t e s t S i z e ) , t ra in , t e s t ) ) =>
742 ( treeToCTree ( t r a i nS i z e , input ) , ( ( trainC , trainW , t r a i n S i z e ) , ( testC , testW ,

t e s t S i z e ) , t e s t ) )
743
744 fun createRandomSpl itPoints (maxValue , numAttributes ) =
745 L i s t . t abu la te ( numAttributes ,
746 fn i => NominalSpl i t ( i , getRandomInt (maxValue−1) + 2)
747 )
748
749 fun getDataSetArguments ( ) =
750 l et
751 val s p l i t P o i n t s L i s t = L i s t .map ( fn x => createRandomSpl itPoints (4 , x ) )
752 [ 6 , 7 , 8 , 9 , 10 ]
753 val maxNumClassesList = [ 4 ]
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754 val depthList = [ ˜ 1 ]
755 in
756 getTr ipplePermutat ions ( s p l i tPo i n t sL i s t , maxNumClassesList , depthList )
757 end
758
759 fun getManipulationArguments ( ) =
760 l et
761
762 val amountTrainingList = [ 0 . 5 ]
763 val amountOfTrainingToTrainingList = [ 0 . 2 , 0 . 25 , 0 . 3 , 0 . 3 5 ]
764
765 val numAttributeToRemoveList = rangeInt (0 , 5 , 1)
766 in
767 getTr ipplePermutat ions ( amountTrainingList , amountOfTrainingToTrainingList ,

numAttributeToRemoveList )
768 end
769
770 val = MLton .Random . srand (Word . fromInt (1000) )
771
772 val createInputsOutputs
773 = ( createSyntet i c InputsOutputs
774 ( genModel genDataFromFunctionModel )
775 ( manipulateDataSetWithCTree )
776 ( getDataSetArguments ( ) )
777 ( getManipulationArguments ( ) )
778 )
779 (∗ %}}} End s y n t h e t i c data ∗)
780
781 val numTrain = 1
782 val numTest = 10
783 val ( Test inputs , Test outputs ) = ( createInputsOutputs numTest )
784 val ( Va l ida t i on input s , Va l ida t i on output s ) = ( Test inputs , Test outputs )
785 val ( Inputs , Outputs ) = ( createInputsOutputs numTrain )
786
787 val Al l output s = Vector . f romList ( Outputs @ Test outputs )
788
789 val Funs to use = [
790 ” f a l s e ” , ” t rue ” , ”=” ,
791 ” r e a lL e s s ” , ” realAdd” , ” r ea lSubt ra c t ” , ” r ea lMu l t i p l y ” ,
792 ” r ea lD iv id e ” , ” tanh” , ” to r ” , ” r cons tLes s ” ,
793 ”CTreeListNi l ” , ”CTreeListCons” ,
794 ”CLeaf” , ”CDN” ,
795 ” Calcu la tedDis t ”
796 ]
797
798 val Re j e c t fun s = [ ]
799 fun r e s t o r e t r an s f o rm D = D
800
801 structure Grade : GRADE =
802 struct
803
804 type grade = unit
805 val zero = ( )
806 val op+ = fn ( , ) => ( )
807 val comparisons = [ fn => EQUAL ]
808 val t oS t r ing = fn => ””
809 val f romStr ing = fn => SOME()
810
811 val pack = fn => ””
812 val unpack = fn =>()
813
814 val po s t p r o c e s s = fn => ( )
815
816 val toRealOpt = NONE
817
818 end
819
820 val Abstrac t types = [ ” s p l i t p o i n t ” ]
821
822 val sumCAndW = sumCorrectAndWrong c l a s s i f yCTree
823
824 fun output eva l fun ( I : int , , prunedTree : c t r e e ) =
825 l et
826 val ( ( treeTrainC , treeTrainW , t r e eTra inS i z e ) ,
827 ( treeTestC , treeTestW , t r e eTe s tS i z e ) ,
828 testData ) = Vector . sub ( Al l outputs , I )
829
830 val ( prunedTreeC , prunedTreeW) = sumCAndW( prunedTree , testData )
831 val cImp = prunedTreeC − treeTestC
832 val c = Real . f l o o r ( ( Real . f romInt ( cImp ) / Real . f romInt ( treeTestC ) ) ∗ 10000 .0)
833 in
834 {numCorrect = prunedTreeC , numWrong = prunedTreeW , grade = ( ) }
835 end
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836 handle Ex =>
837 {numCorrect = 0 , numWrong = 100000 , grade = ( ) }
838
839 fun ca lcDistEq ( cd1 as Calcu latedDis t ( C1 , M1, N1 , TN1 ) , cd2 as Calcu latedDis t ( C2 , M2,

N2 , TN2 ) ) =
840 C1 = C2 andalso Real .==( M1, M2 ) andalso Real .==( N1 , N2 ) andalso Real .==( TN1,

TN2 )
841
842 fun s p l i t p o i n t e q ( NominalSpl i t X, NominalSpl it Y ) = X = Y
843 | s p l i t p o i n t e q ( Cont inuousSpl i t X, Cont inuousSpl i t Y ) =
844 #1 X = #1 Y andalso Real .==( #2 X, #2 Y )
845 | s p l i t p o i n t e q ( , ) = f a l s e
846
847 fun c t r e e e q ( CLeaf ( CalcDist1 ) , CLeaf ( CalcDist2 ) ) =
848 ca lcDistEq ( CalcDist1 , CalcDist2 )
849 | c t r e e e q ( CDN( P1 , Dist1 , Xs1 ) , CDN( P2 , Dist2 , Xs2 ) ) =
850 s p l i t p o i n t e q ( P1 , P2 ) andalso
851 ca lcDistEq ( Dist1 , Dist2 ) andalso
852 c t r e e l i s t e q ( Xs1 , Xs2 )
853 | c t r e e e q ( , ) = f a l s e
854
855 and c t r e e l i s t e q ( CTreeListNil , CTreeListNi l ) = true
856 | c t r e e l i s t e q ( CTreeListCons ( X1 , Xs1 ) , CTreeListCons ( Y1 , Ys1 ) ) =
857 c t r e e e q ( X1 , Y1 ) andalso c t r e e l i s t e q ( Xs1 , Ys1 )
858 | c t r e e l i s t e q = f a l s e
859
860 val Max output genus card = 4
861 val Max output genus complexity = 1 .2
862
863 val Max time l imit = 1000000
864 val Time l imi t base = 1000000.0
865 val Max syntact i c complex i ty = 1 .0 e300
866 val Use t e s t da t a f o r max syn ta c t i c c omp l ex i t y = true
867
868 val main range eq = c t r e e e q
869
870 val Number o f output at t r ibutes = 1
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Rewritten f Function for
Pruning Specification 2

1 fun er rorEst imate ( ( sc , sn , sN) : r e a l ∗ r e a l ∗ r e a l ) : r e a l =
2 l et
3 val n = sn ∗ 100 .0
4 val e = n − ( sc ∗ 2 .0 ∗ n)
5 in
6 i f e < 1 .0 then
7 l et
8 val base = n ∗ ( 1 . 0 − pow(0 . 25 , 1 .0 / n) )
9 in

10 i f 0 .0 < e then
11 base + e ∗ (
12 ( e r rorEst imate ( ( n−1.000000001) / (2 . 0 ∗ n) , sn , sN)
13 ) − base )
14 else
15 base
16 end
17 else
18 i f n < e + 0 .5 then
19 i f 0 .0 < n − e then n−e else 0 .0
20 else
21 l et
22 val errorRate = ( e + 0 . 5 ) / n
23 val z = 0.674489751129221500
24
25 val sq = ( errorRate / n) −
26 ( errorRate ∗ errorRate / n) +
27 ( z ∗ z / ( 4 . 0 ∗ n ∗ n) )
28
29 val val1 = errorRate + ( z ∗ z ) / ( 2 . 0 ∗ n) + z ∗ ( sq r t sq )
30 val val2 = (1 . 0 + ( z ∗ z ) / n)
31 val r = val1 / val2
32 in
33 ( ( r ∗ n) − e )
34 end
35 end
36 and pruneCTreeList ( CTreeListNi l ) = ( 0 . 0 , CTreeListNi l )
37 | pruneCTreeList ( CTreeListCons (x , xs ) ) =
38 l et
39 val ( errorX , prunedX ) = f x
40 val ( errorXs , prunedXs ) = pruneCTreeList xs
41 in
42 ( errorX + errorXs , CTreeListCons ( prunedX , prunedXs ) )
43 end
44 and f ( curTree as CLeaf ( Ca lcu la tedDis t (
45 c l a s s , sc , sn , sN) ) ) =
46 l et
47 val n = sn ∗ 100 .0
48 val e r r o r = n − ( sc ∗ 2 .0 ∗ n)
49 in
50 (
51 i f 0 .0 < sn then
52 e r r o r + errorEst imate ( sc , sn , sN)
53 else

133
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54 0 . 0 ,
55 curTree
56 )
57 end
58 | f ( CDN( sp l i tPo in t , d i s t , c h i l d r en ) ) =
59 l et
60 val Calcu latedDis t ( c l a s s , sc , sn , sN ) = d i s t
61 val ( ch i ldError , prunedChildren ) = pruneCTreeList ( ch i l d r en )
62 val n = sn ∗ 100 .0
63 val e r r o r = (n − ( sc ∗ 2 .0 ∗ n) ) + errorEst imate ( sc , sn , sN)
64 in
65 i f e r r o r − ( ch i l dEr ro r + 0 . 1 ) < 0.000001 then
66 ( er ror , CLeaf d i s t )
67 else
68 ( ch i ldError , CDN( sp l i tPo in t , d i s t , prunedChildren ) )
69 end
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Synthesized Program for
Pruning Specification 2

1 fun f curTree =
2 case curTree of
3 CLeaf (
4 d i s t as
5 Calcu la tedDis t (
6 mClass as Class ( Val4 ) ,
7 scaledNumInstMajor ityClass ,
8 scaledNumAtNode ,
9 scaledTotalN

10 )
11 ) => (
12 case
13 r ea lMu l t i p l y (
14 scaledNumAtNode ,
15 tor (
16 rcons t ( 12 , 0 .32360293654397926 , 0.6792176711838479E2 )
17 )
18 ) of
19 numAtNode =>
20 (
21 realAdd (
22 r ea lSubt ra c t (
23 numAtNode ,
24 r ea lMu l t i p l y (
25 r ea lMu l t i p l y (
26 scaledNumInstMajor ityClass ,
27 tor (
28 rcons t (
29 34 ,
30 0.8429684274190742E˜4 ,
31 0.28584295366524395E1
32 )
33 )
34 ) ,
35 numAtNode
36 )
37 ) ,
38 scaledNumInstMajor ityClass
39 ) ,
40 curTree
41 )
42 )
43 | CDN(
44 sp l i tPo in t ,
45 d i s t ’ as
46 Calcu la tedDis t (
47 mClass ’ as Class ( Val4 ’ ) ,
48 scaledNumInstMajor ityClass ’ ,
49 scaledNumAtNode ’ ,
50 scaledTotalN ’
51 ) ,
52 ch i l d r en
53 ) =>

135
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54 case
55 r ea lMu l t i p l y (
56 scaledNumAtNode ’ ,
57 tor (
58 rcons t ( 4 , 0.10201505006249995E2 , 0.5959799248750001E2 )
59 )
60 ) of
61 V62BA64 =>
62 case
63 l et
64 fun g3CD3395 V3CD3396 =
65 case V3CD3396 of
66 CTreeListNi l =>
67 (
68 tor ( r cons t ( 0 , 0 . 25 , 0.2350543345568945 ) ) ,
69 CTreeListCons ( curTree , CTreeListNi l )
70 )
71 | CTreeListCons ( V3CD3397 , V3CD3398 ) =>
72 case f ( V3CD3397 ) of
73 V3CD3399 as ( V3CD339A, V3CD339B ) =>
74 case g3CD3395 ( V3CD3398 ) of
75 V3CD339C as ( V3CD339D, V3CD339E ) =>
76 (
77 realAdd ( V3CD339A, V3CD339D ) ,
78 CTreeListCons ( V3CD339B , V3CD339E )
79 )
80 in
81 g3CD3395 ( ch i l d r en )
82 end of
83 V3CD339F as ( V3CD33A0 , V3CD33A1 ) =>
84 case
85 r e a lL e s s (
86 r ea lSubt ra c t (
87 realAdd (
88 r ea lSubt ra c t (
89 V62BA64 ,
90 r ea lMu l t i p l y (
91 r ea lMu l t i p l y (
92 scaledNumInstMajor ityClass ’ ,
93 tor (
94 rcons t (
95 9 ,
96 0.25759437734844126E˜1 ,
97 0.2911831626001407E1
98 )
99 )

100 ) ,
101 V62BA64
102 )
103 ) ,
104 realAdd (
105 tanh (
106 r ea lSubt ra c t (
107 tanh (
108 realAdd (
109 tor (
110 rcons t ( 3 , 0 .628125E˜1 , 0.1052447543004225E1 )
111 ) ,
112 V3CD33A0
113 )
114 ) ,
115 scaledTotalN ’
116 )
117 ) ,
118 scaledTotalN ’
119 )
120 ) ,
121 V3CD33A0
122 ) ,
123 scaledNumAtNode ’
124 ) of
125 true => f ( CLeaf ( d i s t ’ ) )
126 | f a l s e => ( V3CD33A0 , CDN( sp l i tPo in t , d i s t ’ , V3CD33A1 ) )


