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ABSTRACT 

This paper presents classification results for infrasonic 
events using practically all well-known machine learning 
algorithms together with wavelet transforms for pre-
processing.  We show that there are great differences 
between different groups of classification algorithms and 
that nearest neighbor classifiers are superior to all others 
for accurate classification of infrasonic events. 
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1.  INTRODUCTION 

Infrasound is low frequency sound, typically of a 
frequency of a few Hertz to 20 Hertz. Due to its inherent 
properties, infrasound can travel distances of many 
hundreds of kilometers. Infrasound signals can result 
from nuclear explosions, volcanic eruptions, mountain 
associated waves, auroral waves, earthquakes, meteors, 
avalanches, severe weather, quarry blasting, 
air/spacecraft, gravity waves, microbaroms, opening and 
closing of doors, trains and helicopters to name but a few. 
An infrasound monitoring system operating locally like 
the Swedish-Finnish Infrasound Network1 or worldwide 
like CTBTO2 must be capable of detecting and verifying 
infrasonic signals of interest and discriminating them 
from other unwanted infrasonic signals. Characterizing, 
discriminating and classifying infrasonic events therefore 
are tasks with possibly far reaching applications in very 
different disciplines.  
 
An important element for successful classification of 
infrasound data is the pre-processing techniques used to 
form a set of feature vectors that can be used to train and 
test the classifiers. In this work we use continuous 
wavelet transforms to pre-process infrasound data. 
Wavelet transformations have proven to be a valuable 
tool for signal characterization [1,2]. The wavelet 
transform methods developed over the years at IRF Umeå 
[3, 4] are used in this paper.  

                                                           
1 http://www.umea.irf.se/maps/ 
2 http://www.ctbto.org/ 

 
Machine learning provides the technical basis to extract 
implicit, previously unknown, and potentially useful 
information from infrasound data. The idea is to build 
computer programs that sift through infrasound datasets 
automatically, seeking regularities or patterns. Strong 
patterns, if found, will likely generalize to make accurate 
classifications on new data. We use a variety of machine 
learning methods, including neural nets, support vector 
machines, decision trees, association rules, linear models, 
Bayes nets and others. 
 
The advantages of neural network based approaches for 
classifying infrasonic events have been recognized for a 
while [5, 6]. Neural networks are considered to be 
powerful classification tools because of their non-linear 
properties and the fact that they make no explicit 
assumptions about the distribution of the data. We 
experimented with several neural network classifiers, 
including back-propagation classifiers, minimum least 
square linear classifiers, normal densities based quadratic 
classifiers, automatic neural network classifiers and 
random neural network classifiers. Comparing their 
performance, we reached the conclusion that neural 
network classifiers by back-propagation work the best 
among neural net techniques in our case, but are clearly 
inferior to many other machine learning methods. 

2.  FEATURE SELECTION 

Wavelet transforms methods are used to pre-process 
infrasound data. The data pre-processing steps to extract 
feature vectors are as follows. 
 
1.For a time series of N values a Morlet wavelet 
transform is performed with 128 dilations. Thus, three 
matrices, A, R and I, are obtained. The matrix A is a 
matrix of magnitudes of wavelet coefficients, wij: 
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R and I contain the real and imaginary parts of wij. 
 
2.A kind of band-pass filtering of wavelet coefficient 
magnitudes is performed. The entire range of coefficient 
magnitudes, 0 to max (wmax), is divided into 20 intervals 



such that the k-th interval is limited by: 
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For each k the coefficients outside the range defined by 
Eq. (2) are identified and zeroed in matrices R and I, 
creating two new matrices Rk and Ik. The inverse wavelet 
transform is performed using Rk and Ik and a new version 
of the original time series, yk(ti) is created. Thus, the time 
series yk(ti) is what the signal would look like if only a 
narrow range of spectral densities would be present in the 
signal. 
 
3.The operation is repeated 20 times over the range of 
coefficient magnitudes. A new real-valued matrix Z, 
consisting of 20 rows and N columns is created. Each 
row corresponds to a time series, yk(ti).  
 
4.Each row of the matrix Z is wavelet transformed as in 
step 1, resulting in 20 matrices. Then these matrices are 
time-averaged (average along rows) leading to 20 arrays 
with 128 elements. A new matrix Y is constructed with 
the 20 arrays as rows. This matrix Y is what we call Time 
Scale Spectrum (TSS) of the time series. 
 
A 3-D plot of the matrix Y may be constructed, showing 
the time scale (1/frequency) of the signal on the x-axis, 
the wavelet coefficient magnitude of the original signal, 
in percent of its max value, on the y-axis and the wavelet 
coefficient magnitude (power spectral density) of the 
decomposed components as the colour scale.  
 
For the infrasound signals the TSS may be useful to 
resolve different frequency components. This feature 
extraction process is invariant with respect to record 
length, sampling frequency, signal amplitude and time 
sequence length. Figure 1 shows an infrasound signal 
train with 212 = 4096 components, representing 227.55 
seconds sampled at 18 Hz and its TSS. 

 
Fig. 1. The infrasound signal from a meteorite and its 

TSS 

3.  CLASSIFIERS 

In this section, we first describe classical neural nets 
trained with back-propagation and then machine learning 
algorithms in WEKA. 
 
Back-propagation neural nets (BPNNs) typify supervised 
learning, where the task is to learn to map input vectors to 
desired output vectors. The back-propagation learning 
algorithm modifies feed-forward connections between the 
input and the hidden units, and the hidden and outputs 

units, so that when an input vector is presented to the 
input layer, the output layer’s response should be the 
desired output vector. During training, the error caused 
by the difference between the desired output vector and 
the output layer’s response to an input vector propagates 
back through connections between layers and adjusts 
appropriate connection weights so as to minimize the 
error [7].  
 
WEKA [8] contains practically all common machine 
learning algorithms except neural nets.  However, not all 
of those algorithms have support for both numerical 
features and nominal classes. In addition, we experienced 
problems with four of the algorithms, making it 
impossible to use them. All in all, we ended up running 
22 different algorithms with their default parameters if 
nothing else is stated. 
 
These algorithms are grouped into five groups in WEKA 
according to what models they create. The first group, 
Bayes, includes algorithms where learning results in 
Bayesian models. NaiveBayes is an implementation of 
the standard naïve Bayes algorithm, where a normal 
distribution is used for numerical features. BayesNet 
creates a Bayesian Network with the ability to represent 
the same model as NaiveBayes or other more complex 
models where the independence between features is not 
assumed.  
 
The second group, Lazy, is comprised of algorithms that 
delay construction of classifiers until classification time. 
IB1 is a nearest-neighbor algorithm classifying an 
instance according to the nearest neighbor identified by 
the Euclidean distance as explained in [9]. IBK is similar 
to IB1 except that the k nearest neighbors are used 
instead of only one. We determined the appropriate 
number of neighbors using leave-one-out cross-
validation. Another algorithm is LWL (Locally weighted 
learning), which differs from the other two algorithms 
since it only uses a nearest-neighbor algorithm to weight 
the instances in the training set before applying another 
classification algorithm to them. We chose naïve Bayes 
because it is recommended for classification problems by 
the creators of WEKA. 
 
The third group, Rules, contains methods that create 
classification rules. OneR is the simplest of all the rule 
inducers and learns a single rule using only a single 
feature. The other four algorithms are more complex 
since they create several rules. NNge is a nearest-
neighbor algorithm which learns rules based on the hyper 
rectangles it divides the instance space into [10]. JRip is 
an implementation Cohen’s RIPPER [11]. RIPPER 
creates first a default rule and then recursively develops 
exceptions to it. Part constructs rules based on partial 
decision trees. 
  
The fourth group, Functions, contains algorithms 
representing their learnt models as mathematical 
formulas.. SMO is a sequential optimization algorithm 
for building Support Vector Machines (SVMs) [12]. We 
used a polynomial kernel which is the default in WEKA. 
RBFNetwork is an implementation of radial basis 
functions, and SimpleLogistic constructs linear logistic 
regression models. 
 



The fifth group, Trees, includes algorithms that create 
trees as models. Four of the six tree inducers create trees 
with a single class at the leaves. RandomTree learns a 
multi-level tree constructed by randomly choosing the 
splitting criterion. RandomForest is an implementation of 
Breiman’s random forest [13], where bagging and 
random trees are combined. J48 is an implementation of 
the popular C4.5 [14]. REPTree is similar to C4.5 since it 
finds the splitting criteria based on information gain, but 
it uses reduced-error-pruning to prune the tree instead of 
pessimistic training error. 
 
The last two algorithms have models in the leaves instead 
of a specific class. NBTree builds a tree with naïve Bayes 
classifiers at the leaves, where reduced-error-pruning 
controls the depth of the tree. LMT creates a tree with 
linear logistic regression models at the leaves. 
 
The last group, Miscellaneous, contains algorithms that 
do not fit into any of the other groups. HyperPipes finds 
ranges (max and min values for numerical features) for 
each feature and class pair. An instance is classified as 
the class with the most “hits” into its ranges. VFI, on the 
other hand, finds intervals for each feature, and attributes 
each class according to number of instances with the 
class in the training set for the specific interval. Voting is 
used to select the final class for an instance. Both of these 
algorithms are simple compared to the other algorithms 
and extremely fast. 

4.  EXPERIMENTAL RESULTS 

The feature vectors, TSS, were extracted from time-
domain event signals resulting in two dimensional 
20x128 matrices. These matrices were converted to 2560-
element one dimensional feature vectors. Figure 2 shows 
two sets of feature vectors of the two different types of 
events. 

 

 
Fig. 2. Two feature vectors 

Experiment 1: One Infrasound Category 

In this experiment, we made a total of 200 infrasound 
measurements of 10 different doors being opened and 
closed.  We chose to use 100 of these examples for 
training and the remaining 100 for testing. 
 
The experiment was conducted with the MatLab neural 
network toolbox for BPNN and the WEKA toolbox for 
other machine learning algorithms. Each classifier was 

trained using 10 samples of every door and tested with a 
different set of 10 samples of every door. The 
classification results are shown in table 1 for BPNN and 
in table 2 for the WEKA machine learning algorithms. 
 
The 2560/200/10 architecture was selected for BPNN, 
which means that the input layer has 2560 neurons, the 
hidden layer 200 neurons (this number was picked after 
we experimented with different number of neurons, see 
Table 1) and the output layer 10 neurons. The output 
layer is to produce target output as 
[{1000000000},{0100000000},…}]. The network is a 
two-layer log-sigmoid/log-sigmoid network. The log-
sigmoid transfer function was picked because its output 
range (0 to 1) is perfect for learning to output Boolean 
values. All training was done using back-propagation 
with both adaptive learning rate and momentum. The 
network was trained for a maximum of 5000 epochs or 
until the network mean squared error (MSE) falls beneath 
0.01. The final MSE was 0.00982 after 300 training 
epochs. The results give a 24 % error. 

Table 1. Results from BPNN 

   Architecture Training 
epochs 

Error % 

2560/20/10 903 34 
2560/40/10 1281 31 
2560/100/10 307 28 
2560/150/10 300 27 
2560/200/10 300 24 
2560/300/10 315 23 
2560/400/10 290 22 

 
The classification results for machine learning 

methods in WEKA vary greatly between algorithms and 
between different groups of algorithms, see Table 2.  

Table 2. Results from WEKA 

Group Algorithm Error % 
NaiveBayes 12 Bayes BayesNet 12 
IB1 7 
IBK (Cross-

validation) 
7 

LWL 
(NaïveBayes) 

11 Lazy 

IBK (5) 12 
NNge 10 
Part 27 
Ridor 34 
JRip 40 
DecisionTable 41 

Rules 

OneR 60 
SMO 8 
RBFNetwork 13 Functions 
SimpleLogistic 15 
RandomForest 14 
LMT 15 
J48 23 
REPTree 33 

Trees 

RandomTree 37 
Hyperpipes 11 Misc VFI 42 

 
Bayes is one of the better groups. BayesNet have similar 
performance to NaiveBayes, possibly due to construction 
of a network similar to NaiveBayes. 



Lazy is by far the best group of algorithms. The best 
algorithms in this group are IB1 and IBK with seven 
percent error on the test data. In addition, the equal result 
of IB1 and IBK suggest that a single neighbor was chosen 
during cross-validation. To investigate this further, we 
tested running IBK with five neighbors which resulted in 
an error percent of 12. 
 
LWL achieved poorer results than the other two 
algorithms in the group. This might be a result of it not 
using the nearest neighbor algorithm directly, but only for 
weighting the training set. Interestingly, it has similar 
performance to NaiveBayes, which is the algorithm used 
as base learner for LWL. Thus, it appears that local 
weighting has a small or no impact for this dataset. 
Functions have done well as a group, which is not 
particularly surprising based on the fact that the 
algorithms in this group tend to handle numerical features 
well. SMO is one of the best algorithms overall, which 
shows that support vector machines are worth trying for 
signal classification. It seems that the more complex the 
method, the better the result. 
 
The Trees group is split into two groups according to the 
results. In the first group are RandomForest and LMT. 
These are methods that either build trees with models at 
their leaves or combine several trees. The other tree 
inducers, which create trees with a single class at the 
leaves, achieve much poorer results. These differences in 
performance might be the result of more complex trees 
having to be induced by the simpler algorithms due to 
simpler leaves, numerous classes and only numerical 
features resulting in binary splitting. In addition, the 
models of LMT and NBTree, logistic regression and 
naïve Bayes, perform well separately for this dataset. 
The Rules group is probably the worst group of all. NNge 
is the only rule inducer that performs well, and it is a 
nearest neighbor algorithm. The other algorithms perform 
poorly, possibly due to being better at handling nominal 
rather than numerical features. 
 
The algorithms in the Miscellaneous group vary greatly 
in performance. Hyperpipes have a low error percent, 
while VF1 have a high error percent. This shows that one 
should always test the simplest algorithms first before 
using the more complex and computational intensive 
methods. 

Experiment 2: Four Categories 

Four categories of infrasound events are of interest in this 
section. The data were collected from different 
infrasound sensor arrays with different geometries and 
different locations. Details of the data are given in Table 
3. 

Table 3. Infrasound data summary 

Event Type No. of 
Events 

No. of       
Samples 

Meteorites 4 30 
Vehicle 3 27 
Man-made explosion 8 24 
Opening-closing doors 10 27 

 

To measure the classification accuracy, a 10-fold cross-
validation technique is used in this experiment. That is, 
the whole dataset is partitioned into 10 subsets. Then 9 of 
the subsets are used as the training set, and the tenth is 
used as the test set. This process is repeated 10 times, 
once for each subset used as the training set. 
Classification performance comes from the average of 
these 10 runs. This technique ensures that the training and 
test sets are disjoint, see Table 4. 

Table 4. Results from WEKA 

Group Algorithm Error % 
NaiveBayes 16 Bayes BayesNet 6 
IB1 1 
IBK (Cross-

validation) 
1 

LWL (NaïveBayes) 12 
Lazy 

IBK (5) 6 
NNge 19 
Part 12 
Ridor 13 
JRip 19 
DecisionTable 10 

Rules 

OneR 21 
SMO 6 
RBFNetwork 12 Functions 
SimpleLogistic 6 
RandomForest 7 
LMT 5 
J48 11 
REPTree 19 

Trees 

RandomTree 18 
Hyperpipes 20 Misc VFI 6 

5. CONCLUSIONS 

Features based on wavelet transform methods proven 
effective for the analysis and characterization of 
infrasound signals when combined with the best state-of-
the-art machine learning methods from the WEKA 
toolbox. The best of these methods, IB1, yields only 
seven percent error on the one category test data whereas 
neural networks as implemented in MatLab gave more 
than a twenty percent error for all the architectures that 
we tried. 
This shows how important it is to choose the appropriate 
machine learning algorithm for a given problem domain 
and that there are huge and domain specific variations 
between the algorithms. 
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