
Classification of Infrasound Events with
 Various Machine Learning Techniques

José CHILO
Royal Institute of Technology, S-106 91 Stockholm
and University of Gävle, S-801 76 Gävle, Sweden

Roland OLSSON
Ostfold University College, N-1757 Halden, Norway

Stig-Erland HANSEN
Ostfold University College, N-1757 Halden, Norway

and
Thomas LINDBLAD

Royal Institute of Technology, S-106 91 Stockholm, Sweden

ABSTRACT

This paper presents classification results for infrasonic
events using practically all well-known machine learning
algorithms together with wavelet transforms for pre-
processing. We show that there are great differences
between different groups of classification algorithms and
that nearest neighbor classifiers are superior to all others
for accurate classification of infrasonic events.

Keywords: Classification, Machine Learning, Pattern
Recognition, Wavelets

1. INTRODUCTION

Infrasound is low frequency sound, typically of a
frequency of a few Hertz to 20 Hertz. Due to its inherent
properties, infrasound can travel distances of many
hundreds of kilometers. Infrasound signals can result
from nuclear explosions, volcanic eruptions, mountain
associated waves, auroral waves, earthquakes, meteors,
avalanches, severe weather, quarry blasting,
air/spacecraft, gravity waves, microbaroms, opening and
closing of doors, trains and helicopters to name but a few.
An infrasound monitoring system operating locally like
the Swedish-Finnish Infrasound Network1 or worldwide
like CTBTO2 must be capable of detecting and verifying
infrasonic signals of interest and discriminating them
from other unwanted infrasonic signals. Characterizing,
discriminating and classifying infrasonic events therefore
are tasks with possibly far reaching applications in very
different disciplines.

An important element for successful classification of
infrasound data is the pre-processing techniques used to
form a set of feature vectors that can be used to train and
test the classifiers. In this work we use continuous
wavelet transforms to pre-process infrasound data.
Wavelet transformations have proven to be a valuable
tool for signal characterization [1,2]. The wavelet
transform methods developed over the years at IRF Umeå
[3, 4] are used in this paper.

1 http://www.umea.irf.se/maps/
2 http://www.ctbto.org/

Machine learning provides the technical basis to extract
implicit, previously unknown, and potentially useful
information from infrasound data. The idea is to build
computer programs that sift through infrasound datasets
automatically, seeking regularities or patterns. Strong
patterns, if found, will likely generalize to make accurate
classifications on new data. We use a variety of machine
learning methods, including neural nets, support vector
machines, decision trees, association rules, linear models,
Bayes nets and others.

The advantages of neural network based approaches for
classifying infrasonic events have been recognized for a
while [5, 6]. Neural networks are considered to be
powerful classification tools because of their non-linear
properties and the fact that they make no explicit
assumptions about the distribution of the data. We
experimented with several neural network classifiers,
including back-propagation classifiers, minimum least
square linear classifiers, normal densities based quadratic
classifiers, automatic neural network classifiers and
random neural network classifiers. Comparing their
performance, we reached the conclusion that neural
network classifiers by back-propagation work the best
among neural net techniques in our case, but are clearly
inferior to many other machine learning methods.

2. FEATURE SELECTION

Wavelet transforms methods are used to pre-process
infrasound data. The data pre-processing steps to extract
feature vectors are as follows.

1.For a time series of N values a Morlet wavelet
transform is performed with 128 dilations. Thus, three
matrices, A, R and I, are obtained. The matrix A is a
matrix of magnitudes of wavelet coefficients, wij:

128,...1 ,...1 |}{| === jNiwA ij (1)

R and I contain the real and imaginary parts of wij.

2.A kind of band-pass filtering of wavelet coefficient
magnitudes is performed. The entire range of coefficient
magnitudes, 0 to max (wmax), is divided into 20 intervals

such that the k-th interval is limited by:

20,...1 ; * and * 20max20
)1(

max =− kww kk (2)

For each k the coefficients outside the range defined by
Eq. (2) are identified and zeroed in matrices R and I,
creating two new matrices Rk and Ik. The inverse wavelet
transform is performed using Rk and Ik and a new version
of the original time series, yk(ti) is created. Thus, the time
series yk(ti) is what the signal would look like if only a
narrow range of spectral densities would be present in the
signal.

3.The operation is repeated 20 times over the range of
coefficient magnitudes. A new real-valued matrix Z,
consisting of 20 rows and N columns is created. Each
row corresponds to a time series, yk(ti).

4.Each row of the matrix Z is wavelet transformed as in
step 1, resulting in 20 matrices. Then these matrices are
time-averaged (average along rows) leading to 20 arrays
with 128 elements. A new matrix Y is constructed with
the 20 arrays as rows. This matrix Y is what we call Time
Scale Spectrum (TSS) of the time series.

A 3-D plot of the matrix Y may be constructed, showing
the time scale (1/frequency) of the signal on the x-axis,
the wavelet coefficient magnitude of the original signal,
in percent of its max value, on the y-axis and the wavelet
coefficient magnitude (power spectral density) of the
decomposed components as the colour scale.

For the infrasound signals the TSS may be useful to
resolve different frequency components. This feature
extraction process is invariant with respect to record
length, sampling frequency, signal amplitude and time
sequence length. Figure 1 shows an infrasound signal
train with 212 = 4096 components, representing 227.55
seconds sampled at 18 Hz and its TSS.

Fig. 1. The infrasound signal from a meteorite and its

TSS

3. CLASSIFIERS

In this section, we first describe classical neural nets
trained with back-propagation and then machine learning
algorithms in WEKA.

Back-propagation neural nets (BPNNs) typify supervised
learning, where the task is to learn to map input vectors to
desired output vectors. The back-propagation learning
algorithm modifies feed-forward connections between the
input and the hidden units, and the hidden and outputs

units, so that when an input vector is presented to the
input layer, the output layer’s response should be the
desired output vector. During training, the error caused
by the difference between the desired output vector and
the output layer’s response to an input vector propagates
back through connections between layers and adjusts
appropriate connection weights so as to minimize the
error [7].

WEKA [8] contains practically all common machine
learning algorithms except neural nets. However, not all
of those algorithms have support for both numerical
features and nominal classes. In addition, we experienced
problems with four of the algorithms, making it
impossible to use them. All in all, we ended up running
22 different algorithms with their default parameters if
nothing else is stated.

These algorithms are grouped into five groups in WEKA
according to what models they create. The first group,
Bayes, includes algorithms where learning results in
Bayesian models. NaiveBayes is an implementation of
the standard naïve Bayes algorithm, where a normal
distribution is used for numerical features. BayesNet
creates a Bayesian Network with the ability to represent
the same model as NaiveBayes or other more complex
models where the independence between features is not
assumed.

The second group, Lazy, is comprised of algorithms that
delay construction of classifiers until classification time.
IB1 is a nearest-neighbor algorithm classifying an
instance according to the nearest neighbor identified by
the Euclidean distance as explained in [9]. IBK is similar
to IB1 except that the k nearest neighbors are used
instead of only one. We determined the appropriate
number of neighbors using leave-one-out cross-
validation. Another algorithm is LWL (Locally weighted
learning), which differs from the other two algorithms
since it only uses a nearest-neighbor algorithm to weight
the instances in the training set before applying another
classification algorithm to them. We chose naïve Bayes
because it is recommended for classification problems by
the creators of WEKA.

The third group, Rules, contains methods that create
classification rules. OneR is the simplest of all the rule
inducers and learns a single rule using only a single
feature. The other four algorithms are more complex
since they create several rules. NNge is a nearest-
neighbor algorithm which learns rules based on the hyper
rectangles it divides the instance space into [10]. JRip is
an implementation Cohen’s RIPPER [11]. RIPPER
creates first a default rule and then recursively develops
exceptions to it. Part constructs rules based on partial
decision trees.

The fourth group, Functions, contains algorithms
representing their learnt models as mathematical
formulas.. SMO is a sequential optimization algorithm
for building Support Vector Machines (SVMs) [12]. We
used a polynomial kernel which is the default in WEKA.
RBFNetwork is an implementation of radial basis
functions, and SimpleLogistic constructs linear logistic
regression models.

The fifth group, Trees, includes algorithms that create
trees as models. Four of the six tree inducers create trees
with a single class at the leaves. RandomTree learns a
multi-level tree constructed by randomly choosing the
splitting criterion. RandomForest is an implementation of
Breiman’s random forest [13], where bagging and
random trees are combined. J48 is an implementation of
the popular C4.5 [14]. REPTree is similar to C4.5 since it
finds the splitting criteria based on information gain, but
it uses reduced-error-pruning to prune the tree instead of
pessimistic training error.

The last two algorithms have models in the leaves instead
of a specific class. NBTree builds a tree with naïve Bayes
classifiers at the leaves, where reduced-error-pruning
controls the depth of the tree. LMT creates a tree with
linear logistic regression models at the leaves.

The last group, Miscellaneous, contains algorithms that
do not fit into any of the other groups. HyperPipes finds
ranges (max and min values for numerical features) for
each feature and class pair. An instance is classified as
the class with the most “hits” into its ranges. VFI, on the
other hand, finds intervals for each feature, and attributes
each class according to number of instances with the
class in the training set for the specific interval. Voting is
used to select the final class for an instance. Both of these
algorithms are simple compared to the other algorithms
and extremely fast.

4. EXPERIMENTAL RESULTS

The feature vectors, TSS, were extracted from time-
domain event signals resulting in two dimensional
20x128 matrices. These matrices were converted to 2560-
element one dimensional feature vectors. Figure 2 shows
two sets of feature vectors of the two different types of
events.

Fig. 2. Two feature vectors

Experiment 1: One Infrasound Category

In this experiment, we made a total of 200 infrasound
measurements of 10 different doors being opened and
closed. We chose to use 100 of these examples for
training and the remaining 100 for testing.

The experiment was conducted with the MatLab neural
network toolbox for BPNN and the WEKA toolbox for
other machine learning algorithms. Each classifier was

trained using 10 samples of every door and tested with a
different set of 10 samples of every door. The
classification results are shown in table 1 for BPNN and
in table 2 for the WEKA machine learning algorithms.

The 2560/200/10 architecture was selected for BPNN,
which means that the input layer has 2560 neurons, the
hidden layer 200 neurons (this number was picked after
we experimented with different number of neurons, see
Table 1) and the output layer 10 neurons. The output
layer is to produce target output as
[{1000000000},{0100000000},…}]. The network is a
two-layer log-sigmoid/log-sigmoid network. The log-
sigmoid transfer function was picked because its output
range (0 to 1) is perfect for learning to output Boolean
values. All training was done using back-propagation
with both adaptive learning rate and momentum. The
network was trained for a maximum of 5000 epochs or
until the network mean squared error (MSE) falls beneath
0.01. The final MSE was 0.00982 after 300 training
epochs. The results give a 24 % error.

Table 1. Results from BPNN

 Architecture Training
epochs

Error %

2560/20/10 903 34
2560/40/10 1281 31
2560/100/10 307 28
2560/150/10 300 27
2560/200/10 300 24
2560/300/10 315 23
2560/400/10 290 22

The classification results for machine learning

methods in WEKA vary greatly between algorithms and
between different groups of algorithms, see Table 2.

Table 2. Results from WEKA

Group Algorithm Error %
NaiveBayes 12 Bayes BayesNet 12
IB1 7
IBK (Cross-

validation)
7

LWL
(NaïveBayes)

11 Lazy

IBK (5) 12
NNge 10
Part 27
Ridor 34
JRip 40
DecisionTable 41

Rules

OneR 60
SMO 8
RBFNetwork 13 Functions
SimpleLogistic 15
RandomForest 14
LMT 15
J48 23
REPTree 33

Trees

RandomTree 37
Hyperpipes 11 Misc VFI 42

Bayes is one of the better groups. BayesNet have similar
performance to NaiveBayes, possibly due to construction
of a network similar to NaiveBayes.

Lazy is by far the best group of algorithms. The best
algorithms in this group are IB1 and IBK with seven
percent error on the test data. In addition, the equal result
of IB1 and IBK suggest that a single neighbor was chosen
during cross-validation. To investigate this further, we
tested running IBK with five neighbors which resulted in
an error percent of 12.

LWL achieved poorer results than the other two
algorithms in the group. This might be a result of it not
using the nearest neighbor algorithm directly, but only for
weighting the training set. Interestingly, it has similar
performance to NaiveBayes, which is the algorithm used
as base learner for LWL. Thus, it appears that local
weighting has a small or no impact for this dataset.
Functions have done well as a group, which is not
particularly surprising based on the fact that the
algorithms in this group tend to handle numerical features
well. SMO is one of the best algorithms overall, which
shows that support vector machines are worth trying for
signal classification. It seems that the more complex the
method, the better the result.

The Trees group is split into two groups according to the
results. In the first group are RandomForest and LMT.
These are methods that either build trees with models at
their leaves or combine several trees. The other tree
inducers, which create trees with a single class at the
leaves, achieve much poorer results. These differences in
performance might be the result of more complex trees
having to be induced by the simpler algorithms due to
simpler leaves, numerous classes and only numerical
features resulting in binary splitting. In addition, the
models of LMT and NBTree, logistic regression and
naïve Bayes, perform well separately for this dataset.
The Rules group is probably the worst group of all. NNge
is the only rule inducer that performs well, and it is a
nearest neighbor algorithm. The other algorithms perform
poorly, possibly due to being better at handling nominal
rather than numerical features.

The algorithms in the Miscellaneous group vary greatly
in performance. Hyperpipes have a low error percent,
while VF1 have a high error percent. This shows that one
should always test the simplest algorithms first before
using the more complex and computational intensive
methods.

Experiment 2: Four Categories

Four categories of infrasound events are of interest in this
section. The data were collected from different
infrasound sensor arrays with different geometries and
different locations. Details of the data are given in Table
3.

Table 3. Infrasound data summary

Event Type No. of
Events

No. of
Samples

Meteorites 4 30
Vehicle 3 27
Man-made explosion 8 24
Opening-closing doors 10 27

To measure the classification accuracy, a 10-fold cross-
validation technique is used in this experiment. That is,
the whole dataset is partitioned into 10 subsets. Then 9 of
the subsets are used as the training set, and the tenth is
used as the test set. This process is repeated 10 times,
once for each subset used as the training set.
Classification performance comes from the average of
these 10 runs. This technique ensures that the training and
test sets are disjoint, see Table 4.

Table 4. Results from WEKA

Group Algorithm Error %
NaiveBayes 16 Bayes BayesNet 6
IB1 1
IBK (Cross-

validation)
1

LWL (NaïveBayes) 12
Lazy

IBK (5) 6
NNge 19
Part 12
Ridor 13
JRip 19
DecisionTable 10

Rules

OneR 21
SMO 6
RBFNetwork 12 Functions
SimpleLogistic 6
RandomForest 7
LMT 5
J48 11
REPTree 19

Trees

RandomTree 18
Hyperpipes 20 Misc VFI 6

5. CONCLUSIONS

Features based on wavelet transform methods proven
effective for the analysis and characterization of
infrasound signals when combined with the best state-of-
the-art machine learning methods from the WEKA
toolbox. The best of these methods, IB1, yields only
seven percent error on the one category test data whereas
neural networks as implemented in MatLab gave more
than a twenty percent error for all the architectures that
we tried.
This shows how important it is to choose the appropriate
machine learning algorithm for a given problem domain
and that there are huge and domain specific variations
between the algorithms.

ACKNOWLEDGMENT

The authors would like to thank Dr. Clark S. Lindsey for
valuable comments on the manuscript.

References

[1] Liszka, L. “Categorization of Infrasonic Sources”. Paper
presented at CTBT Infrasound Workshop 2000, Passau,
Germany.

[2] Schmitter, E. D. “Characterisation and Classification of
Natural Transients”, Transactions on Engineering,
Computing and Technology, vol. 13, May 2006.

[3] Liszka L. and Holmström M., “Extraction of a
deterministic component from ROSAT X-ray data using a
wavelet transform and the principal component analysis”.
Astron. Astrophys. Suppl. Ser. , 140, 125-134, November
1999.

[4] Liszka L., Cognitive Information Processing in Space
Physics and Astrophysics, Pachart Publishing House,
Tucson, Arizona, 2003.

[5] Ham F. and Park S., “A Robust Neural Network Classifier
for Infrasound Events Using Multiple Array data”, IEEE
International Joint Conference NN, vol. 3, 2615-2619,
May 2002.

[6] Ham F., Rekab K., Park S., Acharyya R. and Lee Y.,
“Classification of infrasound Events Using Radial Basis
Function Neural Network”. IEEE International Joint
Conference NN, vol. 4, 2649-2654, July 2005.

[7] Wang D., “Pattern Recognition: Neural Networks in
Perspective”. Ohio State University 1993.

[8] Witten I. H. and Frank E., Data mining: Practical Machine
Learning Tools and Techniques, 2nd Edition, Morgan
Kaufmann Publishers, San Mateo, CA, 2005.

[9] Aha D.W., “Tolerating noisy, irrelevant, and novel
attributes in instance-based learning algorithms”,
International Journal of Man-Machine Studies, vol. 36(2),
267-287, 1992.

[10] Martin B., “Instance-Based learning: Nearest Neighbor
With Generalization”, Master Thesis, University of
Waikato, Hamilton, New Zealand, 1995.

[11] Cohen W. W., "Fast Effective Rule Induction",
Proceedings of the 12th International Conference, on
Machine Learning, 115-123, 1995.

[12] Platt J., “Sequential minimal optimization: A fast algorithm
for training support vector machines”, Technical Report
98-14, Microsoft Research, Redmond, Washington, April
1998.

[13] Breiman L., ”Random Forests”, Machine Learning, vol.
45(1), 5-32, 2001.

[14] Quinlan R., C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers, San Mateo, CA, 1993.

